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Abstract

This dissertation deals with non- and semi-parametric Bayesian inference of gap-

time distribution with recurrent event data and simultaneous inference of component

and system reliabilities of coherent systems data. Recurrent event data arise from

a wide variety of studies/fields such as clinical trials, epidemiology, public health,

biomedicine (e.g. repeated heart attack, repeated tumor occurrences of a cancer pa-

tient). In Chapter 2 we develop nonparametric Bayes and empirical Bayes estimators

of the survivor function F̄ = 1 − F , of the gap-time distribution by assigning a

Dirichlet process prior on F . We develop a closed form estimator of F̄ as well as a

procedure to sample from the posterior measure and thus construct point-wise cred-

ible intervals. Semiparametric Bayesian inference of the gap-time survivor function

with the effect of covariates of a correlated recurrent event in the presence of censor-

ing is considered in Chapter 3. A frailty model is considered to allow the association

between inter-occurrence gap-times. We assign a gamma process prior on the base-

line cumulative hazard function Λ0 and parametric prior distributions on the finite

dimensional parameters associated with covariates and frailties. We derive the con-

ditional posterior distributions of the unknown parameters of interest from the joint

posterior distribution and employ Gibbs sampling techniques to obtain samples from

the joint posterior distribution. In Chapter 4 we focus on nonparametric Bayesian

inference of reliability of coherent systems which are prevalent in many settings such

as in mechanical, engineering, military, and financial systems. In our nonparametric

Bayesian approach we assign independent partition-based Dirichlet (PBD) priors, on

the component distribution functions. A simultaneous inference procedure of compo-
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nent and system reliabilities is developed. Bayesian paradigm provides a more general

estimator in the sense that we can recover corresponding nonparametric estimators

as a limiting case of our developed estimators both in recurrent event and reliability

settings.
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Chapter 1

Introduction

1.1 Analysis of Recurrent Event Data

Determination of an unknown distribution is one of the most important problems

in Statistics. In many studies we only observe one event for a subject and infer-

ence is based on a single event setup. For example, in medical research an HIV

patient is observed from the beginning of the treatment to the occurrence of a par-

ticular condition or death and the event time is denoted by T . Various models and

methods (parametric, non-/semi-parametric, and Bayesian) have been considered for

the analysis of survival data (lifetime data) based on single event settings and their

asymptotic properties are well established. However, in many situations an event

(e.g. tumor occurrences, heart attack) could occur repeatedly for the same subject

over the monitoring period. Such an event is called a recurrent event in the literature.

Recurrent event data are prevalent in a wide variety of studies/fields such as

clinical trials, epidemiology, public health, biomedicine, psychology, reliability, and

engineering. For instance, in clinical trials/medical research we could observe re-

current events when a patient diagnosed with cancer tends to relapse over time or

when a patient is repeatedly admitted to a hospital. Examples of recurrent events

in the reliability engineering settings, are repeated failures of a deployed (mechani-

cal/electronic) system and the occurrences of cracks in concrete structures, among

others. In recurrent event analysis, interest usually lies in modeling the dependence of

the occurrence of recurrent events on the covariates, so that inference can be carried

1
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Figure 1.1: Pictorial representation of the MMC periods in minutes, (Censored: Red
Crossed Sign)

out on the effects of covariates on the recurrent event process.

In the recurrent event data accrual scheme, a subject is monitored over a period

[0, τ ], where τ is some administrative time or study termination time. The monitoring

period could be random, governed by an unknown distribution G(t) = P(τ ≤ t).

Event-times are indexed by the calendar time s as well as the inter-event gap-times

2
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Figure 1.2: Pictorial representation of the occurrences of a recurrent event for a
subject with K = 3 event occurrences.

Table 1.1: General form of data accrual in recurrent events

Unit # Occurrences: Ki Successive Gap-Times Length of Study Period
1 K1 T11, T12, . . . , T1K1 τ1
2 K2 T21, T22, . . . , T2K2 τ2
... ... ... ...
n Kn Tn1, Tn2, . . . , TnKn τn

t. Denote the calendar times of event occurrences by

0 ≡ S0 < S1 < . . . < SK ,

where Sk is the time of k-th event, and the inter-event gap-times by

T1, T2, . . . , TK with Tk = Sk − Sk−1, k = 1, 2, 3, . . . .

The number of event occurrences is

K = max{k ∈ {0, 1, 2, . . .} : Sk ≤ τ}.

Note that the last event (event that traverses τ) is right censored by τ − SK , that

is, TK+1 ≥ τ − SK . Figure 1.1 is a pictorial representation of the occurrences of a

recurrent event of 19 individuals from a study concerning the small bowel motility (see

Husebye et al. (1990)), while Figure 1.2 is a pictorial representation of recurrent event

occurrences for a subject with K=3. This recurrent event data, hereafter referred as

the MMC data, will be used to illustrate the estimators developed in Chapter 2.

3
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Table 1.2: Random Observables

Unit Vector of Observables
1 D1 = (K1, T11, T12, . . . , T1K1 , τ1 − S1K1)
2 D2 = (K2, T21, T22, . . . , T2K2 , τ2 − S2K2)
... ...
n Dn = (Kn, Tn1, Tn2, . . . , TnKn , τn − SnKn)

A layout of data accrual is given in Table 1.1 when n units are in the study.

The end of monitoring times τi, i = 1, 2, . . . , n are IID from a common distribution

function G. Random observables for the n units in the recurrent event setup is as

given in Table 1.2

1.1.1 Models for Recurrent Event Analysis

There are several models and methods such as the complete intensity approach based

counting process (Andersen and Gill (1982)), the marginal rate approach (Pepe and

Cai (1993); Wei et al. (1989)), and the inter-event gap-times approach (e.g., Peña

et al. (2001)) used for the analysis of recurrent event data. The main difference

between various proposed methods is the function that is modeled or the parameter

of interest (see Miloslavsky et al. (2004a)). Assume the covariate process X(s) for

an arbitrary subject over the monitoring period [0, τ ] is observable and denoted by

{X(s) = (X1(s), X2(s), . . . , Xq(s)) : s ≤ τ}. To review some of the commonly used

models in the literature, we assume s ≤ τ and let

N(s) =
∞∑
j=1

I(Sj ≤ s) and Y (s) = I(τ ≥ s),

which are also known as the counting process or the jump process and the “at-risk”

process, respectively. The full information just before s is denoted by

Hs− = {N (t),Y (t),X (t) : t < s},

4
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which is also known as the filtration or history of the stochastic process just before

time s, where N (s) = {N(t) : t ≤ s}, Y (s) = {Y (t) : t ≤ s}, and X (s) = {X(t) :

t ≤ s}.

1.1.1.1 AG model (1982)

The intensity process of the counting process N(t) is defined as

E[dN(t) |Ht−] = Y (t)λ(t |Ht−), (1.1)

where λ(t |Ht−) is the instantaneous probability of the process N(t) jumping at time

t conditional on Ht−. The AG (Andersen and Gill (1982)) model is the most com-

monly used model for the intensity of a continuous counting process and is described

in detail in Gill (1980), Andersen and Gill (1982), and Andersen et al. (1993) and is

given by

λ(t |Ht−) ≡ λ(t | X(t)) = λ0(t) exp(βtX(t)), (1.2)

where λ0(t) = limh→0
P (T<t+h|T≥t)

h
is the baseline hazard rate function of gap-time

(baseline) distribution function F0 at time t and β is a vector of regression coefficients.

Note that from the formulation (1.1), it is clear that the intensity function depends

on the past history of N . If the intensity process (e.g., 1.2) does not depend on

N then the successive gap-times are assumed to be independent. The dependence

between recurrent events can be addressed by incorporating frailty models in the full

intensity process. In the frailty model one of the common assumptions is that given

the unobserved frailty, successive gap-times are independent. Alternative models

such as marginal models and proportional rate models have been developed by some

authors to avoid the specification of dependence structure.

5
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1.1.1.2 Marginal Models

Wei et al. (1989) (WLW) considered a marginal model in their analysis of the bladder

cancer data. Their method models the marginal distribution of each failure time

without considering the dependency structure among event times for a subject. In

their approach each event or event type is modeled as a separate strata. The intensity

function for the kth event is

λk(s | X(s)) = λ0k(s) exp[βtXk(s)], k = 1, 2, . . . , K,

where Xk(s) denotes the value of the covariate vector X(s) at the kth event occur-

rence. Wei et al. (1989) provides event specific estimates as well as overall estimates.

The overall estimate is the weighted average of the event-specific estimates such that

the corresponding weighted average of the robust variance is the smallest possible.

However, Cook and Lawless (1997) pointed out that the ‘WLW’ model is only valid

when censoring is independent of event type or event occurrences. This approach

is cumbersome when the number of recurrent event occurrences K is large. In the

‘WLW’ method subjects who are censored before (k−1)th event occurrence can be at

risk for the kth event without having experienced (k−1)th event which seems unreal-

istic and difficult to interpret. Pepe and Cai (1993) included the term Nk−1(t−) = 1

in the filtration for the right-censored data to avoid the problem of being at risk of

having kth event without having experienced (k − 1)th event.

1.1.1.3 Proportional Rate Model

Lawless and Nadeau (1995a), Lawless et al. (2001), and Lin et al. (2000) are among

others who considered modeling the rate of recurrent events by using a proportional

rates model. The parameter of interest of their approach is the rate of N(t) and is

defined as

E[N(t) |H ∗
t−] = Y (t)m(t) (1.3)

6
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where H ∗
s− = {X (t) : t ≤ s} and m(t) is the rate of event occurrences in the process

of N(t). Lin et al. (2000) consider the proportional rate model given by

E[N(t) |H ∗
t−] = Y (t)m0(t) exp(βγ∗(t))

where m0 is a nonnegative baseline rate function and γ∗(t) is a known function of

H ∗
t−.

1.1.1.4 A General Class of Models

Peña and Hollander (2004) proposed a general class of models for recurrent event

analysis with the intensity function given by

λ(s | W = w,X(s) = x(s)) = wλ0[E (s)]ρ[N †i (s−);α]ψ[βtx(s)].

This general class of models simultaneously incorporates the effect of covariates

through the link function ψ, association among the event occurrences for a sub-

ject through the unobserved frailty W, the effect of accumulated event occurrences

through ρ(·;α), and the effect of intervention after event occurrences through the

effective age processes E (·). They considered semiparametric inference for a gen-

eral class of models for recurrent event data based on gap-time formulation. In the

estimation procedure Peña and Hollander (2004) and Peña et al. (2007) used mod-

ern tools such as counting process and martingale theory to develop the estimators

with their asymptotic properties. In a simple setting (when gap-times are IID) with

ψ[βtX] = exp[βtX] the intensity function associated with kth gap-time distribution

is given by

λk(s | X) = λ0(s− Sk−1) exp[βtX].

In this case the at risk process is Y (s) = I{Sk−1 < s ≤ Sk}.

Some of the above models have been compared using real and simulated data,

yielding different results as illustrated by Therneau and Hamilton (1997) and Th-

erneau and Grambsch (2000), among others. The framework of the AG model is

7
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more widely used for multiple event and recurrent event analysis due to its efficiency

as Therneau and Grambsch (2000) concluded. However, as Kelly and Lim (2000)

pointed out, it is unclear which model is suitable for the analysis of recurrent events

but they prefer the framework of the AG model over the marginal model.

1.1.2 Bayesian Inference with Recurrent Event Data

The classical form of making inference is to assume that F belongs to a parametric

family characterized by a finite number of parameters and then estimate the parame-

ters using the likelihood approach. However, the resulting inference will be erroneous

if the assumed parametric form is misspecified. In contrast, the Bayesian paradigm

provides more general estimators in that nonparametric Bayes estimators often are

in the form of a linear combination of prior means and the classical nonparametric

estimators. Consequently, we can obtain the corresponding nonparametric estimators

as a limiting case of Bayes estimators. In addition, Bayes estimators are robust with

respect to misspecification of prior measures or distributions. Susarla and Van Ryzin

(1976) studied the nonparametric Bayesian estimation of the survival function in sin-

gle event settings by assigning a Dirichlet process prior on F . One can view Susarla

and Van Ryzin (1976)’s estimator as a Bayesian counterpart of the Kaplan and Meier

(1958) estimator of F̄ . Kalbfleisch (1978) considered nonparametric Bayesian anal-

ysis of single event survival time data by assigning a gamma processes prior on the

baseline cumulative hazard function Λ0(t) =
∫ t

0 λ0(u)du.

Nonparametric Bayesian inference with recurrent event data has not yet been

completely developed. Sinha (1993) considered semiparametric Bayesian inference

of multiple events time data, while Ouyang et al. (2013) considered semiparametric

Bayesian inference with recurrent event data. The main interest of their analysis is

to assess the effects of treatments on the event time. However, in this dissertation

we develop nonparametric and semiparametric Bayesian inference of the inter-event

8
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gap-time distribution with recurrent event data.

First, we consider nonparametric Bayes (NPB) and empirical Bayes (NPEB) es-

timation of the inter-event gap-time survivor function. NPB and NPEB estimators

are developed under the assumption that the gap-times are IID from some common

distribution F and gap-times and monitoring times are mutually independent. In our

nonparametric Bayesian approach, we assume that F has a Dirichlet process prior

with parameter α, a non-null finite measure; see Ferguson (1973) and Sethuraman

(1994) for the early development of the Dirichlet process prior. The resulting poste-

rior first moment of F̄ is our nonparametric Bayes estimator of F̄ under the integrated

squared-error loss function

L(F̂ , F ) =
∫

[F̂ (t)− F (t)]2dt, (1.4)

where F̂ (t) is an estimator of F (t).

Assigning a Dirichlet process prior on F also requires us to specify a parameter

α, which is a measure such that α(−∞, t]/α(<) is the prior mean of F (t). However,

instead of specifying α based on subjective beliefs, we may estimate it using the ob-

served data. The resulting Bayes estimator of F̄ is referred to as an empirical Bayes

estimator (cf.,Robbins (1956)). We also developed an empirical Bayes estimator of

the gap-time distribution function in recurrent event settings. Details of the nonpara-

metric Bayes and empirical Bayes inference procedure of the gap-time distribution

are presented in Chapter 2.

In biomedical applications IID assumptions are somewhat restrictive as the gap-

times could be correlated. Moreover, in many biomedical/epidemiological applica-

tions or clinical trials the primary interest is whether the treatment is effective in

reducing event occurrences. Thus, there is a need to develop methodology for the

correlated gap-times to assess the effect of the treatment on the gap-times.

Secondly, we consider a semiparametric Bayesian inference of correlated gap-times

with recurrent event data. To model the correlation between gap-times for a subject

9
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we consider a frailty model. In our approach we assume an unobserved frailty random

variable W | ν ∼ Ga(ν, ν) with unit mean and variance 1/ν. It is assumed that gap-

times and monitoring times are mutually independent. Given the unobserved frailty

variable W = w, we assume gap-times Tj, j = 1, 2, . . . , are IID from a distribution

F̄ (t | W = w) = F̄0(t)w = exp(−wΛ0(t)),

where F̄0(t) and Λ0(t) are the baseline survival and cumulative hazard function, re-

spectively. Denote byX the observable covariate of interest. We consider the intensity

function defined by

λ(t | W = w,X = x) = λ0(t)w exp(βTx).

The parameters of interest are Λ0, β, and ν. We model Λ0 non-parametrically, in

particular, assign it a gamma process prior and assume parametric priors for β and

ν.

To recall the definition of the gamma process prior let V (t) be a stochastic process

with V (∞) < ∞ and 0 ≡ t0 < t1 < . . . < tM < tM+1 = ∞ are partition points of

[0,∞). Assume that the increments {V (t1), V (t2) − V (t1), . . . , V (tM+1) − V (tM)}

are independent and have independent gamma distributions with shape parameters

{ζ(t1), ζ(t2)− ζ(t1), . . . , ζ(tM+1)− ζ(tM)}, where ζ is a nondecreasing function with

ζ(∞) <∞. Then V (t) is called a gamma process.

Following Kalbfleisch (1978) and Sinha (1993) we assign a gamma process prior

on the baseline cumulative hazard function Λ0(t). Assume the prior distributions

of β and ν are a multivariate normal distribution and a gamma distribution with

known hyper-parameters, respectively. Conditional posterior distributions of Λ0, β,

and ν are derived to facilitate the Gibbs sampling procedure. Credible intervals of

the parameters of interest are obtained from the posterior samples. From our Bayes

estimator of the baseline cumulative hazard function we can recover a Breslow-Aalen

type estimator of the baseline cumulative hazard function as a limiting case. We

10
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illustrate our methodology by analyzing two real data sets. Chapter 3 contains the

details of the semiparametric Bayesian inference procedure with recurrent event data.

1.2 Reliability of a Coherent System

It is of interest to assess the risk of failure and the reliability of systems in many

settings, for instance, in mechanical, engineering, military, and financial systems.

The statistical analysis of the reliability of technical systems emerged just after World

War I when it was used to compare the operational safety of one-, two-, and four-

engine airplanes. The theoretical basis of the statistical methods for analyzing the

quality of industrial components and systems was laid down by Walter Shewhart,

Harold F. Dodge, Harry G. Romig, and Walter Deming at the beginning of the

1930’s. However, such methods were not brought into use to any great extent until

the beginning of World War II. Prior to the advent of the use of statistical reliability

and quality control methods, it was the case that even systems with a large number of

high quality components often did not achieve their desired reliability (cf., Rausand

and Høyland (2004)). After World War II more sophisticated products/systems were

produced with an increasing number of parts/components, for example, televisions,

computers, intercontinental ballistic missiles, spacecraft, communication satellites,

passenger and military aircraft. Consequently, there is a critical need to be able

to assess the risk and reliability of complicated systems. For more details about the

history and development of reliability theory, see Knight (1991) and Villemeur (1992).

Precise and reliable knowledge of the performance of deployed systems enables

an informed assessment of risk and failure of the system that could potentially save

lives, enhance wealth, and prevent destruction. It is therefore imperative to have

probabilistic and statistical inferential methods to assess the risk and reliability of

systems.

Assume n identical systems each withK independent components are in the study.

11
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The structure function of a reliability system is defined by φ : {0, 1}K → {0, 1} such

that φ(x) indicates whether the system is in a functioning state (φ(x) = 1) or is

in a failed state (φ(x) = 0). Denote the component lifetime survivor functions by

F̄j(t) = Pr{Tj > t}, j = 1, 2, . . . , K. If the component lifetimes are independent, then

the system survivor function could be expressed in terms of the system’s reliability

function via

F̄φ(t) = hφ(F̄1(t), F̄2(t), . . . , F̄K(t)). (1.5)

More details of the structure function of a coherent system and the reliability function

is given in Chapter 4.

In the nonparametric Bayesian framework we develop an estimation procedure

by assigning a partition-based Dirichlet process prior (Sethuraman and Hollander

(2009)) on F when system lifetime data are available. Similarly in the autopsy

model when component lifetime data are available we estimate the distribution for

each component by assigning an independent PBD prior. Therefore, simultaneous

estimation of component reliabilities and system reliability is performed by plugging

in the estimates of component reliabilities in (1.5). We evaluate the performance of

the developed nonparametric Bayes estimators through simulation studies in terms

of biases and RMSE’s functions and compare with the corresponding nonparametric

Doss et al. (1989) estimators. The Doss et al. (1989) estimator of the system reliability

function is a limiting case of our proposed estimator.

We now outline the contents of this dissertation. In Chapter 2 we develop a

methodology for nonparametric Bayes estimation of the gap-time distribution with

recurrent event data. Chapter 2 is a pre-print version of the article published by the

Journal of Nonparametric Statistics in 2014, available at http://www.tandfonline.com

/doi/full/10.1080/10485252.2014.906744. In Chapter 3 we develop a semiparametric

Bayesian inference of gap-time distribution with recurrent event data. In Chapter

4 we develop a nonparametric Bayesian inference of reliability of coherent systems.
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Technical results of Chapter 2 and Chapter 4 are gathered in Chapter 2 and Chapter

4 appendix, respectively. Chapter 2 appendix also contains the copyright permission

to reprint the Chapter 2.

13



www.manaraa.com

Chapter 2

Nonparametric Bayes Estimation of Gap-Time

Distribution with Recurrent Event Data1

Abstract

Nonparametric Bayes estimation of the gap-time survivor function governing

the time to occurrence of a recurrent event in the presence of censoring is

considered. In our Bayesian approach, the gap-time distribution, denoted by

F , has a Dirichlet process prior with parameter α. We derive nonparametric

Bayes (NPB) and empirical Bayes (NPEB) estimators of the survivor function

F̄ = 1 − F and construct point-wise credible intervals. The resulting Bayes

estimator of F̄ extends that based on single-event right-censored data, and

the PL-type estimator is a limiting case of this Bayes estimator. Through

simulation studies, we demonstrate that the PL-type estimator has smaller

biases but higher root-mean-squared errors (RMSE’s) than those of the NPB

and the NPEB estimators. Even in the case of a mis-specified prior measure

parameter α, the NPB and the NPEB estimators have smaller RMSE’s than the

PL-type estimator, indicating robustness of the NPB and NPEB estimators.

In addition, the NPB and NPEB estimators are smoother (in some sense) than

the PL-type estimator.

1A.K.M. F. Rahman, J. Lynch and E. A. Peña. 2014. Journal of Nonparametric Statistics.
http://www.tandfonline.com/doi/full/10.1080/10485252.2014.906744.
Reprinted here with permission of publisher.
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2.1 Introduction

One of the most important problems in Statistics is the determination of an unknown

distribution, equivalently an unknown probability measure, governing a probability

space. In its most classical form, there is a random sample T1, T2, . . . , Tn which

are independent and identically distributed (IID) from a distribution F which is

only known to belong to the space of distribution functions F. The nonparametric

estimator of F is the empirical distribution function (EDF) defined by

F̂n(t) = 1
n

n∑
i=1

I{Ti ≤ t}, t ∈ <,

where I{·} is the indicator function. From the works of Kolmogorov (1933), Smirnov

(1948), Glivenko (1933), Cantelli (1933), and Donsker (1952), the consistency of F̂n

to F and the weak convergence of the process Wn(t) = {
√
n[F̂n(t)−F (t)] : t ∈ <} to

a zero-mean Gaussian process are well-established.

Starting with the seminal work of Kaplan and Meier (1958), the estimation of

F was also undertaken when the sample data are right-censored. Thus, instead

of observing T1, T2, . . . , Tn, one is only able to observe (Z1, δ1), (Z2, δ2), . . . , (Zn, δn),

where δi ∈ {0, 1} with the interpretation that δi = 1 means that Ti = Zi, while δi = 0

means that Ti > Zi. In this setting, the nonparametric estimator of F is the so-called

product-limit estimator (PLE), also called the Kaplan-Meier estimator (KME), given

by

F̂n(t) = 1−
∏
v≤t

[
1− ∆N(v)

Y (v)

]
, t ∈ <,

where ∏ means product-integral, and where the processes N = {N(t) : t ∈ <} and

Y = {Y (t) : t ∈ <} are defined via

N(t) =
n∑
i=1

I{Zi ≤ t; δi = 1} and Y (t) =
n∑
i=1

I{Zi ≥ t}.

From the works of Kaplan and Meier (1958), Efron (1967), Breslow and Crowley

(1974), and Gill (1980), finite-sample and asymptotic properties of this PLE are well-
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established, in particular, its consistency and the weak convergence to a Gaussian

process of the process Wn.

Ferguson (1973) introduced the Dirichlet process probability measure on the space

of distribution functions. This Dirichlet process was then used as a prior measure

over the space F, and a nonparametric Bayes estimator of F was developed in the

complete data setting where T1, T2, . . . , Tn are observed. This Bayes estimator, which

is obtained under an integrated squared-error loss function, is a convex combination

of the empirical distribution function and the prior estimate of F under the Dirichlet

process prior. With right-censored data, Susarla and Van Ryzin (1976) obtained the

nonparametric Bayes estimator of F , also under integrated squared-error loss, when

a Dirichlet process prior is assigned on F .

Recurrent event data sets arise from a wide variety of studies/fields such as clinical

trials, epidemiology, public health, biomedicine, psychology, reliability and engineer-

ing. Examples are repeated tumor occurrences in cancer patients (Byar (1980)),

successive seizures in epileptic patients (Albert (1991)), recurrent small bowel motil-

ity in gastroenterology study (Aalen and Husebye (1991)), and repeated warranty

claims or failures in manufactured equipments (Kalbfleisch et al. (1991)). The de-

velopment of statistical models and methods for analyzing recurrent event data is of

crucial importance. For instance, Proschan (1963), Gill (1980), Vardi (1982), Sellke

(1988), Aalen and Husebye (1991), McClean and Devine (1995), Soon and Woodroofe

(1996), Wang and Chang (1999), Ghosh and Lin (2000), Peña et al. (2001), Cook

and Lawless (2002), Nelson (2003), Lindqvist (2006), Peña et al. (2007), Stocker and

Peña (2007), Adekpedjou et al. (2010), and Gjessing et al. (2010), have dealt with

inferential problems with recurrent event data. However, nonparametric Bayesian

inference with recurrent event data has not yet been completely developed. Susarla

and Van Ryzin (1976) studied nonparametric Bayesian estimation of the survival

function given a right-censored data in single event settings using a Dirichlet process
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prior. Sethuraman and Hollander (2009) considered nonparametric Bayes estimation

for repair models using a partitioned-based prior. In addition, Robbins (1956), first

formally introduced the notion of an empirical Bayes approach. Following Robbins

(1956), Korwar and Hollander (1976) and Susarla and Van Ryzin (1978) dealt with

a nonparametric setup of empirical Bayes estimation of survival function for single

event complete and right-censored observations, respectively. Significant works on

a parametric empirical Bayes approach appeared in a series of paper by Efron and

Morris (1972, 1973, 1976).

In this paper, we consider nonparametric Bayes estimation of the inter-event gap-

time survivor function when recurrent event data is available. For our purpose we

assume that the successive inter-event times (gap-times) for the ith unit, denoted

by {Tij, j = 1, 2, . . .}, are independent and identically distributed (IID) nonnegative

random variables with a common distribution function F . However, the ith unit will

only be observed over [0, τi] where τ1, τ2, . . . , τn are IID with a common distribution

function G. It is assumed that τi and {Tij, j = 1, 2, . . .} are mutually independent.

For the ith unit the number of observed event occurrences is

Ki = max{k ∈ {0, 1, . . . } : Sik ≤ τi},

where Si0 = 0 and Sik = ∑k
j=1 Tij, k = 1, 2, . . . , and the observable random vector is

Di = (τi, Ki, Ti1, Ti2, . . . , TiKi , τi − SiKi).

It should be emphasized that this observable random vector has more complicated

distributional characteristics owing to the sum-quota accrual constraint which states

that for each i = 1, 2, . . . , n,

SiKi ≤ τi < SiKi + TiKi+1.

In particular, given Ki ≥ 1, Ti1 does not any more have an F̄ survival function. Aside

from this, (Ti1, Ti2, . . . , TiKi), given Ki = ki, are not any more independent of each
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other since ∑Ki
j=1 Tij ≤ τi. This distributional complexity distinguishes recurrent-

event problems from the conventional single event settings. Note that τi−SiKi is the

right-censoring variable for TiKi+1. This is the same recurrent event model considered

in Peña et al. (2001) where a nonparametric PL-type estimator of F was obtained.

Their estimator extended the single event Kaplan and Meier (1958) product-limit

estimator to the recurrent event setting.

In our nonparametric Bayesian approach, we assume that F has a Dirichlet pro-

cess prior with parameter α, a non-null finite measure; see Ferguson (1973) and

Sethuraman (1994) for the early developments of the Dirichlet process prior. The

idea implemented in deriving our nonparametric Bayes estimator of F̄ mimics that

of Susarla and Van Ryzin (1976), where the first step is to update the Dirichlet pro-

cess given all the complete observations. In the second step we then compute the

posterior moments of F̄ when the right-censored observations are also given. The

resulting posterior first moment of F̄ is our nonparametric Bayes estimator of F̄ un-

der an integrated squared-error loss function. In addition, instead of specifying the

prior parameter α, we also employ empirical Bayes ideas where we utilize the data to

estimate α. The estimator resulting from this approach is referred to as an empirical

Bayes estimator; see Robbins (1956) and Casella (1985). It will be seen that both

the nonparametric Bayes and empirical Bayes estimators have smaller root-mean-

squared errors (RMSE’s) than the PL-type estimator. Results of simulation studies

will further indicate that the nonparametric Bayes and empirical Bayes estimators

are robust in the sense that they do not suffer severely from a mis-specified prior

measure parameter α. Moreover, the RMSE’s of the empirical Bayes estimator is

smaller than that of the PL-type estimator even in this mis-specified case.

We outline the contents of this chapter. In Section 2.2, we recall some results about

Dirichlet processes and then derive the nonparametric Bayes estimator of F̄ = 1−F

and construct point-wise credible intervals of F̄ . Section 2.3 establishes that the
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PL-type estimator is a limiting case of the nonparametric Bayes estimator. It is

also established that the Bayes estimator is a linear combination of the prior mean

distribution ᾱ = α/α(<+) and the PL-type estimator. In Section 2.4, results of our

simulation studies are presented. In this section the biases and root-mean-squared

errors (RMSE’s) of the Bayes and the empirical Bayes estimators are compared with

those of the PL-type estimator. Biases and RMSE’s of Bayes and empirical Bayes

estimators under a mis-specified prior are also examined, which will demonstrate

the robustness of the Bayesian estimator. Section 2.5 provides an illustration using

the gastroenterology data in Aalen and Husebye (1991). Section 2.6 provides some

concluding thoughts. An appendix gathers the technical proofs.

2.2 Nonparametric Bayes Estimation

2.2.1 Mathematical Setup

In the sequel, all random entities will be defined on a basic probability space given

by (Ω,A , ), where A is a σ-field of subsets of the space Ω and is a probability

measure on the measurable space (Ω,A ). Generic elements of Ω will be denoted by

ω’s. F will denote the collection of all distribution functions on < whose supports

are subsets of [0,∞), and this is endowed with a σ-field of subsets, F , generated by

the finite-dimensional cylinder sets. D(α) will denote a Dirichlet process on (F,F )

with parameter α, a non-null finite measure on (<+,B+), as introduced in Ferguson

(1973). The number of units or subjects in the study will be denoted by n. We now

formally describe the Bayesian statistical model of interest.

Let F : (Ω,A ) → (F,F ) and G : (Ω,A ) → (F,F ) be F-valued stochastic

processes which are independent and with F ∼ D(α) and G ∼ D(α′), where α and

α′ are non-null finite measures on (<+,B+). For j = 1, 2, . . . ; i = 1, 2, . . . , n, let

Tij : (Ω,A ) → (<+,B+) and τi : (Ω,A ) → (<+,B+), such that, given (F,G),
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{Tij}s are independent and identically distributed (IID) with distribution F , {τi}s

are IID with distribution G, and {Tij}s and {τi}s are independent. We do not observe

completely the {Tij}s, rather we observe, for each i = 1, 2, . . . , n,

Di = (τi, Ki, Ti1, Ti2, . . . , TiKi , τi − SiKi), (2.1)

where Si0 ≡ 0, Sik =
k∑
j=1

Tij, k = 1, 2, . . . ; and Ki = max{k ∈ {0, 1, 2, . . .} : Sik ≤ τi}.

The observable Di is the recurrent event data as considered in Peña et al. (2001).

The independent Dirichlet processes D(α) and D(α′), which are probability measures

governing F and G, serve as the nonparametric priors on the underlying distributions

F and G in the context of the Bayesian setting considered in this paper. Our goal is

to obtain a nonparametric Bayes estimator of F , given D = (D1,D2, . . . ,Dn), under

the integrated squared-error loss function

L(F̂ , F ) =
∫

[F̂ (t)− F (t)]2dw(t), (2.2)

where w : [0,∞) → <+ is a pre-specified weight function and F̂ (t) is an estimator

of F (t). In our approach we will consider w(t) = t, so that under the loss function

(2.2), the posterior mean function is our Bayes estimator of F (·), the estimator that

yields the minimum Bayes risk.

We recall the definition of a Dirichlet process and some of its basic properties as

obtained in Ferguson (1973).

Definition 1: Let α be a non-null finite measure on (<+,B+), where B+ is the Borel

σ-field on [0,∞). We say that the random probability measure P on (<+,B+) is a

Dirichlet process with parameter α if for every k = 1, 2, . . . and measurable partition

(B1, B2, . . . , Bk) of <+, the joint distribution of the random vector (P (B1), . . . , P (Bk))

is a Dirichlet distribution denoted by D(α(B1), . . . , α(Bk)) , D(α). The associated

random distribution function F (t) .= P ((−∞, t]), t ∈ <+, is then also said to be a

Dirichlet process.
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Definition 2: Let P be a random probability measure on (<+,B+). Then (T1, T2, . . . ,

Tn) is said to be a random sample of size n from P if, for any m = 1, 2, . . . , and mea-

surable sets A1, A2, . . . , Am, C1, C2, . . . , Cn, we have

P{T1 ∈ C1, . . . , Tn ∈ Cn | P (A1), . . . , P (Am), P (C1), . . . , P (Cn)} =
n∏
j=1

P (Cj), a.s..

Result 1: Let P be a Dirichlet process on (<+,B+) with parameter α. If T is a

sample of size one from P , then, for any A ∈ B+,

P(T ∈ A) = α(A)
α(<+) ·

Result 2: Let P be a Dirichlet process on (<+,B+) with parameter α and T1, T2, . . . ,

Tn be a sample of size n from P . Then, the conditional probability measure of P ,

given T1, T2, . . . , Tn, is a Dirichlet process with parameter α + ∑n
i=1 δTi . That is, if

P ∼ D (α) , then

P | (T1, T2, . . . , Tn) ∼ D

(
α +

n∑
i=1

δTi

)
, where δT (A) = I{T ∈ A}.

2.2.2 Nonparametric Bayes Estimator of F̄

Recall that random observables for the n subjects are D = (D1,D2, . . . ,Dn), where

Di is defined in (2.1). Observe that τi − SiKi is the right-censoring random variable

for TiKi+1, so that the last observation for each unit is always right-censored. Clearly,

TiKi+1 ∈ [T ∗i ,∞), where T ∗i = τi − SiKi , i = 1, 2, . . . , n. We use {t∗i }’s as the realized

values of {T ∗i }’s. For i = 1, 2, . . . , n, we define

δij = 1, j = 1, 2, . . . , Ki; δiKi+1 = 0.

One may represent the observable random variables for all the n units according to

{(δij, Tij), i = 1, 2, . . . , n; j = 1, 2, . . . , Ki, Ki + 1}.

That is, if δij =1, then Tij’s are complete (uncensored) observations, while if δij=0,

then Tij is a right-censored observation.
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Z

X Y

QZ

Q(X, Y)|Z

Want expectation of  h(Z)

given

(X,Y) ∈ B1XB2

Knowing  X ∈ B1, update   QZ  into  QZ|X( ⋅ |B1)
and   QY|Z  into  QY|(X, Z)( ⋅ |Z,  B1).

Z YQZ|X( ⋅ |B1) QY|(X, Z)( ⋅ |Z, B1)

Find expectation of  h(Z)  given  Y ∈ B2

under the above distribution laws of  Z  and  Y.

Figure 2.1: Graphical representation of Lemma 1.

We update the prior measure by deriving the distribution of P , given (τi, Ki =

ki, Ti1 = ti1, Ti2 = ti2, . . . , TiKi = tiki , Tiki+1 > τi − Siki ; i = 1, 2, . . . , n), or, equiv-

alently, P | (Ti1 = ti1, Ti2 = ti2, . . . , TiKi = tiki , Siki ≤ τi, Tiki+1 ∈ [t∗i ,∞); i =

1, 2, . . . , n). This will be done in two steps. Step 1 uses the crucial Proposition

1, which demonstrates that the posterior measure is still a Dirichlet process under

the renewal process setting given all the uncensored (complete) observations. In order

to prove Proposition 1, we first prove a more general lemma on conditional expecta-

tion. A special case of the Lemma will then be applied to establish Proposition 1.

Using the results in Proposition 1, Proposition 2, Proposition 3, and Proposition 4

below, Theorem 1 will establish the nonparametric Bayes estimator (2.5). The proofs

of these results are gathered in the Chapter 2 appendix.
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Lemma 1: Let (Ω,A , P ) be a probability space and let (Z,X, Y ) : (Ω,A ) →

(Z ×X ×Y , σ(Z ×X ×Y )). Let QZ be the probability measure induced by Z, and

letQ(X,Y )|Z be a version of the conditional joint probability measure of (X, Y ) given Z.

Let h : (Z , σ(Z ))→ (<1,B1) with E[|h(Z)|] <∞. Then, for B1×B2 ∈ σ(X ×Y ),

EZ∼QZ(·)
(X,Y )|Z∼Q(X,Y )|Z(·,·|z)

[h(Z) | (X, Y ) ∈ (B1 ×B2)]

= EZ∼QZ|X(·|B1)
Y |(Z,X)∼QY |(Z,X)(·|z,B1)

[h(Z) | Y ∈ B2] ,

where QZ|X(· | B1) is a conditional probability measure of Z given X ∈ B1, and

QY |(Z,X)(· | z,B1) is a conditional probability measure of Y given Z = z and X ∈ B1.

Corollary 1 follows immediately from Lemma 1 with X⊥Y | Z.

Corollary 1: Under the condition of Lemma 1, if (X, Y ) are independent conditional

on Z, then

EZ∼QZ(·)
(X,Y )|Z∼Q(X,Y )|Z(·,·|z)

[h(Z) | (X, Y ) ∈ (B1 ×B2)]

= EZ∼QZ|X(·|B1)
Y |Z∼QY |Z(·|Z)

[h(Z) | Y ∈ B2] .

Corollary 2 is a specific version of the Corollary 1, which will be applied to prove the

Proposition 1.

Corollary 2: Let P be a random probability measure on (<+,B+) which is a Dirich-

let process with parameter α, denoted by D(α) ≡ Dα. Let T1, T2 be random variables

such that, given P , T1 and T2 are independent with (T1 | P ) ∼ P and (T2 | P ) ∼ P .

Let h be a measurable function of P with
∫
|h(P )|Dα(dP ) <∞. Then,

E
P∼Dα;(T1,T2)|P iid∼P

[h(P ) | (T1 = t1, T2 ∈ B2)]

= EP∼Dα+δt1
; T2|P∼P [h(P ) | T2 ∈ B2] .

In the sequel, we use an abbreviated notation where EP∼Dα

T1,T2,... |P
iid∼P

[. . .] ≡ EP∼Dα [. . .].

So in particular, EP∼Dα∗
TK+1|P∼P

[. . .] ≡ EP∼Dα∗ [. . .].

Proposition 1: Let P be a Dirichlet process on (<+,B+) with parameter α. Given
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P , let Tij, j = 1, 2, . . . ; i = 1, 2, . . . , n, be IID from P . Let τi, i = 1, 2, . . . , n, be IID

from G. For i = 1, 2, . . . , n, let Ki = max{k ∈ {0, 1, 2, . . .} : Sik = ∑k
j=1 Tij ≤ τi}.

For a measurable function h : (F,F )→ (<,B) with EP∼D(α) | h(P ) |<∞, we have

EP∼D(α)[h(P ) | (τi, Ki = ki, Ti1 = ti1, Ti2 = ti2, . . . , Tiki = tiki , i = 1, 2, . . . , n)]

= EP∼D(α∗)[h(P ) | (Tiki+1 ∈ [t∗i ,∞), i = 1, 2, . . . , n)]I(Siki ≤ τi),

where α∗ = α +∑n
i=1

∑ki
j=1 δTij .

In step 2, instead of deriving the posterior distribution and then obtaining the

moments of h(P ), we directly derive the moments of h(P ), given all the right-censored

observations, i.e. the moments of h(P ) | (Tiki+1 ∈ [t∗i ,∞); i = 1, 2, . . . , n), where P is a

Dirichlet process with parameter α∗ = α+∑n
i=1

∑ki
j=1 δtij . The conditional distribution

is invariant under any permutation of the censored observations. More specifically,

we obtain the conditional moments of h(F̄ (u)) | (Tiki+1 ∈ [t∗i ,∞); i = 1, 2, . . . , n),

where F̄ (u) = P ([u,∞)). We define the processes Y + = {Y +(t) : t ∈ <} and

Y = {Y (t) : t ∈ <} via

Y +(t) =
n∑
i=1

∞∑
j=1

I(Tij > t, τi − Sij−1 > t) =
n∑
i=1

 Ki∑
j=1

I(Tij > t) + I(τi − SiKi > t)

(2.3)

and

Y (t) =
n∑
i=1

∞∑
j=1

I(Tij ≥ t, τi−Sij−1 ≥ t) =
n∑
i=1

 Ki∑
j=1

I(Tij ≥ t) + I(τi − SiKi ≥ t)
 (2.4)

where Y +(t) and Y (t), respectively, denote the number of events (censored and un-

censored) such that event times are strictly greater than t ∈ < and greater than or

equal to t ∈ <. In the statements below, E ≡ EP∼D(α∗) and T ∗(j)’s are the ordered

censored times.

Proposition 2: Let 0 = T ∗(0) < T ∗(1) < . . . < T ∗(m) < T ∗(m+1) = ∞ be the partition

points on <+ = [0,∞) and λ1, . . . , λm be nonnegative integers. Then

c E

 m∏
j=1

(P [T ∗j ,∞))λj
 =

m∏
j=1

B

βj, m+1∑
r=j+1

(βr + λr−1)


24



www.manaraa.com

where βj = α∗[T ∗(j−1), T
∗
(j)) for j = 1, 2, . . . , m+1, c =

∏m+1
j=1 Γ(βj)

Γ(α∗(<+)) , and B(a, b) =
Γ(a)Γ(b)
Γ(a+b) .

Proposition 3: Let F = 1 − F̄ be a Dirichlet process with parameter α∗ = α +∑n
i=1

∑ki
j=1 δtij . Then, for u ∈ <+,

P{F̄ (u) ≥ w|Tiki+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n} = E[I[F (u)≤1−w]
∏n
i=1 P [T ∗i ,∞)]

E[∏n
i=1 P [T ∗i ,∞)] .

Proposition 4: If T ∗(l−1) ≤ u < T ∗(l) for l = 1, 2, . . . ,m + 1, and T ∗(0) = 0 and

T ∗(m+1) =∞, then, for ν = 1, 2, . . .

E
[
(F̄ (u))ν |Tiki+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n

]

=
ν−1∏
s=0


[
α(u,∞) + s+ Y +(u)
α(<+) + s+N

]  l∏
j=1

 α[T ∗(j),∞) + s+ Y (T ∗(j))
α[T ∗(j),∞) + s+ Y (T ∗(j))− λj




where N = n+∑n
i=1 ki and λj is the number of events censored at time T ∗(j).

Theorem 1, which provides the nonparametric Bayes estimator, follows immediately

from Proposition 4 by letting ν = 1.

Theorem 1: Let F = 1− F̄ have a Dirichlet process prior on (<+,B+) with param-

eter α. Then, under the loss function (4.8) with w(t) = t, the nonparametric Bayes

(NPB) estimator of the survival function F̄ (u) is given bŷ̄
FNPB(u) = E[F̄ (u) | Tij = tij, TiKi+1 ∈ [T ∗i ,∞), i = 1, . . . , n; j = 1, . . . , Ki]

=


[
α(u,∞) + Y +(u)
α(<+) +N

]
l∏

j=1

 α[T ∗(j),∞) + Y (T ∗(j))
α[T ∗(j),∞) + Y (T ∗(j))− λj


 (2.5)

for u ∈ [T ∗(l−1), T
∗
(l)), l = 1, 2, . . . ,m+ 1.

Though the proposed estimator (2.5) is notationally similar in form to the Susarla

and Van Ryzin (1976) estimator in the single event setting, it does have intrinsic

differences since in the recurrent event setting the data structure is different than for

the single event setting. For instance, the risk process Y +(t) and Y (t) as defined in

(2.3) and (2.4), respectively are different than those of the Susarla and Van Ryzin
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(1976). Moreover, frequentist properties of the estimator ̂̄
FNPB in (2.5), such as

biases, variances, and RMSE’s, are quite different, owing to the sum-quota constraint.

For instance, this constraint induces dependencies on the observed gap-times for each

unit and renders the Ki’s to become informative about F . See, for example, the

impact of these distributional properties for the PL-type estimator in Peña et al.

(2001).

Theorem 2 develops the posterior variance of F̄ (u) which is also useful for con-

structing credible intervals for F̄ (u).

Theorem 2: Let F = 1− F̄ have a Dirichlet process prior on (<+,B+) with param-

eter α. Then, the posterior variance of the survival function F̄ (u) is given by

σ2
NPB(u) = ̂̄

FNPB(u) ×{α(u,∞) + Y +(u) + 1
α(<+) +N + 1

}
l∏

j=1

 α[T ∗(j),∞) + Y (T ∗(j)) + 1
α[T ∗(j),∞) + Y (T ∗(j)) + 1− λj

− ̂̄
FNPB(u)

 (2.6)

for u ∈ [T ∗(l−1), T
∗
(l)), l = 1, 2, . . . ,m+ 1.

2.2.3 Posterior Measure

In the derivation of the Bayes estimator in (2.5), we avoided obtaining directly the

posterior measure of F̄ , given the recurrent event data. Instead, we obtained the

estimator by directly computing the posterior expected value of F̄ , and the result-

ing estimator is in closed-form and is exact. There is a way, however, to obtain an

approximation of the Bayes estimate via sampling from the posterior measure. The

posterior measure of F̄ turns out to be a mixture of Dirichlet measures, though the

mixing coefficients are somewhat cumbersome to obtain. In Theorem 3 below we

present a representation of this posterior measure which will enable us to readily

take samples from this posterior measure. We could then obtain the mean, standard

deviations, and percentiles of these posterior samples, and via this approach we are

able to construct approximate credible intervals for F̄ .
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Theorem 3: Let P ∼ D(α) on (<+,B+) and B∗ = (B1, B2, . . . , Bm, Bm+1) be a mea-

surable partition of <+. Then the posterior measure of P , given {Tij = tij, TiKi+1 ∈

[t∗i ,∞), i = 1, 2, . . . , n; j = 1, 2, . . . , Ki}, satisfies

P {P (B∗) ∈ B | Tij = tij, Tiki+1 ∈ [t∗i ,∞), i = 1, 2, . . . , n; j = 1, 2, . . . , ki}

∝
∫

B
y
α∗m+1−1
m+1

m∏
l=1

yα∗l−1
l

1−
l∑

j=1
yj

 dy,
where P (B∗) ≡ (P (B1), P (B2), . . . , P (Bm+1)) and P (Bl) = yl, α

∗
l = α∗(Bl), Bl =

[t∗(l−1), t
∗
(l)), l = 1, 2, . . . ,m+ 1 with t∗(0) = 0 and t∗(m+1) =∞.

Note that if λl is the number of observations censored at t∗(l), then

P {P (B∗) ∈ B | Tij = tij, Tiki+1 ∈ [t∗i ,∞), i = 1, 2, . . . , n}

∝
∫

B
y
α∗m+1−1
m+1

m∏
l=1

yα∗l−1
l

1−
l∑

j=1
yj

λl
 dy. (2.7)

Therefore, the density function associated with posterior measure (2.7) is

h∗(y) ∝ y
α∗m+1−1
m+1

m∏
l=1

yα∗l−1
l

1−
l∑

j=1
yj

λl
 , (2.8)

which is also proportional to the so called generalized Dirichlet distribution (see

Connor and Mosimann (1969)). We may now take samples from h∗(y) given in (2.8)

to construct point-wise credible intervals for F̄ (u). To sample from the posterior

measure, following Grego et al. (2013), we consider the transformations

Zl = Yl + Yl+1 + . . .+ Ym+1, l = 1, 2, . . . ,m+ 1.

Define,

Wl = Zl+1

Zl
, l = 1, 2, . . . ,m.

Simplification yields that

Y1 = 1−W1, Y2 = W1(1−W2), . . . , Ym = (1−Wm)
m−1∏
j=1

Wj, Ym+1 =
m∏
j=1

Wj. (2.9)
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Straight-forward derivations show that W1,W2, . . . ,Wm have independent Beta dis-

tributions with

W1 ∼ Beta(A1, α
∗
1),W2 ∼ Beta(A2, α

∗
2), . . . ,Wm ∼ Beta(Am, α∗m), (2.10)

where Aj = α∗[t∗(j),∞) + ∑m
j=1 λj, j = 1, 2, . . . ,m. One may now take samples of

W1,W2, . . . ,Wm, and then obtain Y1, Y2, . . . , Ym+1 using (4.14). The approximate

posterior mean and point-wise credible intervals of F̄ (u) could then be obtained and

constructed, respectively.

Another analytical representation of the nonparametric Bayes estimator of F is

given below. For any j ∈ {1, 2, . . . ,m,m + 1}, let u ∈ Bj and we want to estimate

F (u) ≡ P ((−∞, u]). Note that for any A ∈ B+, P (A) = ∑m+1
k=1 [P (Bk)P (A | Bk)].

Since P ∼ D(α), then

P (B∗) and PB1 , PB2 , . . . , PBm , PBm+1 are independent and PBk ∼ D(αBk),

with αBk(A) = α(A ∩Bk). Therefore, the nonparametric Bayes estimator of F (u) is

F̂ (u) =
j−1∑
l=1

E[Yl] + E[Yj]
{
α∗(Bj ∩ (0, u])

α∗(Bj)

}
, (2.11)

where the expectation is with respect to the posterior measure given in Theorem 3,

E[Yj] = E

(1−Wj)
j−1∏
l=1

Wl

 =
[

α∗j
Aj + α∗j

] j−1∏
l=1

[
Al

Al + α∗l

]
, j = 1, 2, . . . ,m,

and

E[Ym+1] =
m∏
l=1

[
Al

Al + α∗l

]
.

2.2.4 Empirical Bayes Estimator of the Survival Function F̄

Consider (Pij, Tij), j = 1, 2, . . . ; i = 1, . . . , n, be a sequence of pairs of indepen-

dent random elements. The random probability measures {Pij} have common prior

probability measure P given by Dirichlet process D(α). Given Pij, Tij has proba-

bility measure Pij; see Robbins (1956), Korwar and Hollander (1976), and Susarla
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and Van Ryzin (1978) for the early developments and nonparametric setup of em-

pirical Bayes approach. For j = 1, 2, . . . ; i = 1, . . . , n, the common marginal sur-

vival function of the {Tij} is P(Tij > t) = E[P(Tij > t) | Pij] = E[Pij(t,∞)]

= α(t,∞)/α(<+) = ᾱ(t,∞). Our goal here is to estimate ᾱ empirically, where

α = α(<+)ᾱ. In life testing/survival analysis problems one of the common choices of

ᾱ is the Weibull or exponential survivor function; see Susarla and Van Ryzin (1976),

Sethuraman and Hollander (2009). For example, let α(t,∞) = β exp(−tθ). Then

the marginal survivor function of T11, P(T11 > t) = α(t,∞)/α(<+) = ᾱ(t,∞) =

exp(−tθ). For the recurrent event data, the analogue of the empirical estimator of

survivor function is the Peña et al. (2001) PL-type estimator. We estimate θ by

equating some percentile of the PL-type estimator survival curve to the ᾱ, since the

PL-type estimator is estimating the common marginal survival function of {Tij}. For

instance, let M∗ be the median estimate from the PL-type estimator survival curve.

Then solving exp(−M∗θ) = .5, yields an estimate of θ, denoted by θ̂. One can have

a maximum likelihood (ML) estimate of θ from the likelihood associated with the

prior mean function. However, we observed that with an empirical estimate of θ,

the resulting empirical Bayes estimator is robust, whereas with a ML estimate of θ,

the resulting empirical Bayes estimator is not robust with respect to a mis-specified

prior. This will be seen in the simulation studies section.

We also estimate β = α(<+), the precision of the prior belief. To this end, let

T1, T2, . . . , TM denote the observed uncensored events of {Tij} and assume that α is

non-atomic. Now, P ∼ D(α) implies that P | (T1, . . . , TM−1) ∼ D(α + ∑M−1
i=1 δTi).

Thus

P(TM ∈ {T1, . . . , TM−1} | T1, . . . , TM−1) = α(T1, . . . , TM−1) +M − 1
α(<+) +M − 1

= M − 1
α(<+) +M − 1 .

Therefore, P(TM /∈ {T1, . . . , TM−1} | T1, . . . , TM−1) = α(<+)
α(<+)+M−1 . We define Bernoulli
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random variables D1 = 1 and for M = 2, 3, . . . ,

DM =


0 if TM ∈ {T1, . . . , TM−1}

1 if TM /∈ {T1, . . . , TM−1}
.

Using Theorem 25.3 of Sethuraman (2008), we know that D1, . . . , DM are indepen-

dent, and P(DM = 1 | T1, . . . , TM−1) = α(<+)
α(<+)+M−1 . From Theorem 27.1 of Sethura-

man (2008), it follows that
∑M
i=1Di

log(M) → α(<+) with probability 1. (2.12)

As a result, an estimate of β is given by β̂ = ∑M
i=1Di/log(M), where ∑M

i=1Di is the

number of distinct uncensored observations. Thus, the resulting α with the θ̂ and

β̂ is an empirical estimate of α, e.g., α̂(t,∞) = β̂ exp(−tθ̂)) and the corresponding

empirical Bayes estimator of F̄ is given by

̂̄
FNPEB(u) =

 α̂(u,∞) + Y +(u)
α̂(<+) +N

l∏
j=1

 α̂[T ∗(j),∞) + Y (T ∗(j))
α̂[T ∗(j),∞) + Y (T ∗(j))− λj


 ·

Empirical Bayes estimation offers some safeguards against the possible misspec-

ification of the prior measure. Instead of specifying the parameter(s) of the prior

measure, we empirically estimate them by utilizing observed data. It will be seen

in the simulation studies that even in the case of a mis-specified prior measure, the

empirical Bayes estimator of F̄ demonstrates smaller root-mean-squared error than

the Bayes and PL-type estimators.

2.3 PL-Type Estimator is Limit of Bayes Estimator

We can recover the PL-type estimator in the recurrent event setting from our non-

parametric Bayes (NPB) estimator (2.5). To this end, let T ′i , i = 1, 2, . . . , N , de-

note the ordered (increasing magnitude) observed values of Tij, j = 1, 2, . . . , Ki,

and TiKi+1 = τi − SiKi , i = 1, 2, . . . , n, so that 0 ≤ T ′1 ≤ T ′2 ≤, . . . ,≤ T ′N . Let
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N †(w) = ∑N
r=1 I(T ′r ≤ w, δr = 1), where δr = 1 if T ′r is an uncensored (complete)

observation, and 0 otherwise. Then the PL-type estimator in Peña et al. (2001) is

̂̄
F PLE(u) =

∏
w≤u

{
1− ∆N †(w)

Y (w)

}
=
∏
w≤u

{
Y +(w)
Y (w)

}
,

where Y +(w) and Y (w) are defined in (2.3) and (2.4), respectively.

Theorem 4: If α(<+)→ 0, then ̂̄
FNPB(u)→ ̂̄

F PLE(u).

Moreover, we can also express ̂̄FNPB(u) as a linear combination of the ̂̄F PLE(u) and

the prior mean function, ᾱ, as follows:

̂̄
FNPB(u) =

α(u,∞) + Y +(u)
α(<+) +N

l∏
j=1

 α(T ∗(j),∞) + Y (T ∗(j))
α(T ∗(j),∞) + Y (T ∗(j))− λj




= ᾱ(u,∞)
{ α(<+)

α(<+) +N

}
l∏

j=1

 α(T ∗(j),∞) + Y (T ∗(j))
α(T ∗(j),∞) + Y (T ∗(j))− λj




+ ̂̄
F PLE(u)

{ N

α(<+) +N

}
l∏

j=1

Y (T ∗(j))− λj
Y (T ∗(j))

α(T ∗(j),∞) + Y (T ∗(j))
α(T ∗(j),∞) + Y (T ∗(j))− λj


 ,

where ᾱ(u,∞) and ̂̄
F PLE(u), denote the prior mean function and PL-type estimator,

respectively.

From the above representation it is clear that if α(<+) is small relative to N ,

little weight is given to the prior estimate of F̄ , hence ̂̄FNPB(u) and ̂̄
FNPEB(u) will

be dominated by the estimate based on the data ( ̂̄F PLE(u)) rather than ᾱ(u,∞).

Note also that with this representation, we are immediately able to get the result

that ̂̄
F PLE(u) = lim

α(<+)→0

̂̄
FNPB(u).

2.4 Simulation Studies

Simulation studies were carried out to examine the biases and root-mean-squared

errors (RMSE’s) of the nonparametric Bayes estimator (labeled NPBayes) ̂̄FNPB(u)

and empirical Bayes estimator (labeled EmpBayes) ̂̄FNPEB(u), as well as the Product-

Limit estimator (labeled PLE) ̂̄F PLE(u) under the IID inter-event time model. Simu-
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lated biases and RMSE’s were obtained for equally spaced values of ui, i = 1, 2, . . . , 20,

of duration time u over the interval [0,1] based on 1000 replications for n=20, where

the inter-event times were generated from an exponential distribution with parameter

θ = 6. To compute ̂̄FNPB(u) we use the prior measure α(u,∞) = β exp(−(θu)γ) with

θ = 6, γ = 1, and β = 20, [that is, β times an exponential survivor function with

parameter θ] and where β may be viewed as the precision of the prior measure. Note

that in this case ᾱ will coincide with the true F̄ . Empirical estimates, denoted by θ̂

and γ̂, of the parameters θ and γ of the prior measure α are obtained by equating

the marginal survival function of T1,P(T1 > u) = exp(−(θu)γ) to the approximately

50th and 25th percentiles of the ̂̄
F PLE(u) survival curve. One can choose different

percentiles to equate with the marginal distribution since the resulting empirical es-

timates of F̄ are not sensitive to the different choices of percentiles. It is also easy

to have ML estimates of θ and γ, but the corresponding empirical Bayes estimator

is not robust in the case of a mis-specified prior. More specifically the RMSE’s of

the resulting empirical Bayes estimator with the ML estimate(s) are higher than the

empirical Bayes estimator with θ̂ and γ̂ in the case of a mis-specified prior (graph is

not included here). We kept a record of the empirical estimates of θ and γ in the

simulation studies which demonstrates that θ̂∼̇N(6.02, .34) and γ̂∼̇N(1.01, .15) for

1000 replicates where the true parameters are θ = 6 and γ = 1. An estimate of β is

obtained by β̂ = ∑N
i=1Di/log(N) using (2.12). With the resulting estimate of θ, γ,

and β, the empirical Bayes estimate, ̂̄FNPEB(u), is obtained by replacing α(u; θ, γ)

by α̂(u; θ, γ) = β̂ exp(−(uθ̂)γ̂) in (2.5). By examining Figure 2.2, it is evident that

both the ̂̄
FNPB(u) and ̂̄

FNPEB(u) possess smaller biases and smaller RMSE’s than

the ̂̄
F PLE(u) when the mean of the prior measure ᾱ(u,∞) coincides with the true

F̄ (u) or the mean of the prior measure does not differ significantly from the true

distribution function.

We also investigated the biases and RMSE’s in the case of a mis-specified prior
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Figure 2.2: Simulated biases and RMSE’s of ̂̄FNPB(u), ̂̄FNPEB(u), and ̂̄
F PLE(u).

Simulation parameters were n = 20 and θ = 6 with 1,000 replications.

parameter, that is, when ᾱ differs from the true data generating distribution F̄ . In

particular, IID gap-times (inter-event times) were generated from the Weibull model

with scale parameter θ = 6 and shape parameter γ = 2. However, we assume a prior

measure given by α(u,∞) = β exp(−θu) (β times an exponential survivor function

with parameter θ) instead of α(u,∞) = β exp(−(θu)γ). Figure 2.3 compares the

three estimators by demonstrating the effect of the precision parameter β on biases

and RMSE’s when the prior measure is mis-specified. By examining Figure 2.3, it

is obvious that ̂̄F PLE exhibits negligible biases which are smaller in magnitude than

the biases of ̂̄FNPB and approximately equal to the biases of ̂̄FNPEB. However, with

β = 1, the RMSE’s of ̂̄FNPB(u) are smaller than ̂̄
F PLE(u) for larger values u and

almost identical for smaller values of u. In addition, the RMSE’s of the empirical

Bayes estimator ̂̄
FNPEB(u) (Figure 2.3) are smaller than the ̂̄

F PLE(u) for a mis-

specified prior.

As suggested by one of the reviewers and also recommended by the associate

editor, to investigate further the robustness of our proposed estimator we generate
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Figure 2.3: Simulated biases and RMSE’s of ̂̄FNPB(u), ̂̄FNPEB(u), and ̂̄
F PLE(u).

Simulation parameters were n = 20, θ = 6 and γ = 2 (Weibull (6,2)) with 1,000
replications. Mis-specified prior parameters α(u,∞) = β exp(−θu), with θ = 6 and
β = 1, 10, 20 respectively.
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Figure 2.4: Data: Correlated gap-times with sample size n = 20 and 1,000 repli-
cations. Simulated biases and RMSE’s of the estimators ̂̄FNPB(u), ̂̄FNPEB(u) and̂̄
F PLE(u). Mis-specified prior parameters α(u,∞) = β exp(−θu), with θ = 3 and β =
1, 10, 20 respectively.
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data such that for each unit gap-times are correlated by using a frailty model. More

precisely, letW1,W2, . . . ,Wn be a vector of IID positive-valued random variables from

Gamma(ν, ν) with unit mean and variance 1/ν. Given the unobserved frailty variable

Wi, we assume that the successive inter-event times (gap-times) for the ith unit,

denoted by {Tij, j = 1, 2, . . .}, are IID nonnegative random variables with a common

distribution function F (· | Wi) with F̄ (u | W ) = [F̄0(u)]W , where F̄0(u) is the baseline

survivor function. Note that unconditionally, the gap-times are dependent with the

marginal survivor function of Tij being

F̄ (u) = E[F̄0(u)W ] =
[

ν

ν + Λ0(u)

]ν
,

where Λ0(u) is the baseline cumulative hazard function of F̄0. For the ith unit, given

Wi, gap-times are generated from a Weibull distribution with shape parameter 2 and

scale parameter 1/6Wi. For Biases and RMSE’s functions we use our proposed es-

timator based on the assumptions that gap-times {Tij} are IID from F and hence

the model is mis-specified as the generated gap-times are correlated. In addition, we

assume a prior measure given by α(u,∞) = β exp(−θu) with θ = 3 (β times an expo-

nential survivor function with parameter θ) instead of α(u,∞) = β exp(−(θu)γ) with

θ = 6 and γ = 2. Thus, we have model mis-specification as well as mean function of

the prior measure mis-specification. Even with these two types of mis-specifications,

Figure 2.4 demonstrates that ̂̄FNPB(u) and ̂̄
FNPEB(u) have equal or smaller RMSE’s

than ̂̄
F PLE(u) for smaller values of the precision parameter β. Moreover, ̂̄FNPEB(u)

demonstrates smaller RMSE’s than ̂̄
F PLE(u) even for larger values of precision pa-

rameter. This simulation study further demonstrates that the proposed estimators,

in particular, ̂̄FNPEB(u), are robust estimators.

When the prior measure α is mis-specified, a larger magnitude of the precision

parameter β produces larger biases and RMSE’s for the ̂̄FNPB(u). Therefore, if one

is not confident about his/her prior measure belief, a smaller value of β can offset the

possible effect of a mis-specification. Simulation results presented in Figure 2.3 and
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Figure 2.4 demonstrate that the nonparametric Bayes and empirical Bayes are robust

estimators in the sense that they do not suffer significantly due to a mis-specification

of the prior measure.

2.5 Application to Small Bowel Motility Data

We implemented the three survivor function estimators ̂̄
FNPB(u), ̂̄FNPEB(u), and̂̄

F PLE(u) for the gastroenterology data from a study concerning the small bowel motil-

ity (see Husebye et al. (1990)). The data and its description are available in Aalen

and Husebye (1991), where they estimated the mean length of the migratory motor

complex (MMC) period. Peña et al. (2001) also applied their PL-type estimator,̂̄
F PLE(u), to the same data. In order to apply the estimators to the gastroenterology

data, it is necessary to check the IID assumption. However, the renewal assumption

for each subject in the above study is reasonable as established by Aalen and Huse-

bye (1991, p. 1229) where they stated that the “consecutive MMC periods for each

individual appear (to be) approximate renewal process.”

We computed the survivor function estimates ̂̄FNPB(u), ̂̄FNPEB(u), and ̂̄
F PLE(u)

of the inter-event time distribution for the gastroenterology data (MMC data). The

resulting estimates are presented in Figure 2.5. Though the graphical representation

of all the three estimates of the survivor function looks very similar, a magnified

view (graph is not given here) demonstrates that the estimates of ̂̄FNPB(u) and̂̄
FNPEB(u) are smoother than the estimate of ̂̄F PLE(u) in the sense that the former

two are non-step functions with smaller jump sizes than the latter. To obtain the

nonparametric Bayes survivor function estimate we assumed a Dirichlet process with

prior measure α(u,∞) = β exp{−(u/θ)γ} with β = 20, θ = 120, and γ = 2 (Figure

2.5, left graph). One can choose any other values of the parameters θ and γ with the

associated value of the precision parameter β. For empirical estimates, equating the

marginal survivor function of T,P(T > t) = exp{−(u/θ)γ} with the 50th and 25th
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Figure 2.5: Survival function of NPBayes, Empirical Bayes and PLE and 95% point-
wise credible intervals for the MMC data set with prior α(u,∞) = β exp{−(u/θ)γ}
with (β, θ, γ) = (20, 120, 2) (left side graph), (β, θ, γ) = (1, 60, 1) (right side graph),
and α̂(u,∞) = β̂ exp{−(u/θ̂)γ̂} with β̂ = 15, θ̂ = 119, and γ̂ = 1.76.

percentiles of the ̂̄
F PLE(u) survival curve we obtain θ̂ ≈ 119 and γ̂ ≈ 1.76. Again

using (2.12) we estimate β by β̂ = ∑N
i=1Di/log(N) ≈ 15, where ∑N

i=1Di denotes the

number of distinct failure times. The resulting estimate ̂̄FNPB(u) with the estimated

parameters, β̂, θ̂, and γ̂ is the empirical Bayes estimate ̂̄FNPEB(u).

Using the estimates of the survival curve of the inter-event time distribution, we

obtained the corresponding mean MMC period length (in minutes) to be µ( ̂̄F PLE)

= 104.12, µ( ̂̄FNPB) = 102.83, and µ( ̂̄FNPEB) = 104.76. For this data set, the three

methods of analysis yielded almost the same estimates for the mean MMC period

length. We also used another prior parameter α(u,∞) = β exp{−(u/θ)γ} with β = 1,

θ = 60, and γ = 1, which is significantly different from the previous prior measure.

However, the resulting nonparametric Bayes estimate, empirical Bayes estimate, and

PL-type estimate look almost similar as shown in Figure 2.5 (right graph). In this

choice of parameters we assumed that we are not confident enough about our prior

measure and hence we set the precision of the prior parameter to be small, namely
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Figure 2.6: Survival function of NPBayes (labeled NPBayesExact), prior mean func-
tion (labeled PriorMean), posterior mean function (labeled PostMean, based on sam-
ple), and 95% pointwise credible intervals (dotted line: using exact variance, solid
line: using sample from posterior) for the MMC data set with prior α(u,∞) =
β exp{−(u/θ)γ} with (β, θ, γ) = (20, 120, 2) (left side graph), (β, θ, γ) = (1, 60, 1)
(right side graph).

β = 1. The mean MMC period length of ̂̄FNPB for this choice of prior is 103.60,

which is close to the other estimates.

In Figure 2.5, 95% point-wise credible intervals are also plotted which are based

on 1000 samples ofW ’s and thus of Y ’s from the posterior measure given in Theorem

3. In Figure 2.6, we observe that the posterior mean of F̄ based on the samples

from the posterior measure utilizing (4.14), (2.10), and (2.11) and from the closed-

form expression of the nonparametric Bayes estimator (2.5) of F̄ coincides with each

other as expected. We also compute point-wise credible interval (dotted lines) usinĝ̄
F (t)± 1.96σ̂, where σ̂ as given in (2.6). It turns out that the width of the point-wise

credible interval is narrower when we take samples from the posterior measure rather

than using the exact variance formula (2.6). Figure 2.6 demonstrates that credible

intervals based on samples from the posterior measure is more precise and accurate.
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2.6 Concluding Remarks

The nonparametric Bayes estimator ̂̄FNPB(u) developed in this paper extended the

single-event Susarla and Van Ryzin (1976) nonparametric Bayes estimator and serves

as a nonparametric Bayesian counterpart of the PLE in Peña et al. (2001) under the

recurrent event settings. Both the nonparametric Bayes and empirical Bayes estima-

tors are smoother than the PL-type estimator in that the jumps at the time of events

(uncensored time), are smaller for the nonparametric Bayes and empirical Bayes

than the PL-type estimator. Also, the PL-type estimator is a step function, while

the nonparametric Bayes and empirical Bayes estimators are non-step (piece-wise

non-constant) function with jump discontinuities at the time of events. In addition,

RMSE’s are smaller for Bayes and empirical Bayes estimators than the PL-type es-

timator when the mean of the prior is approximately close to the true distribution

function, or, for other choice of prior with smaller value of precision parameter β (e.g.

β = 1).

To compute the PL-type estimator ̂̄F PLE(u), one need not know the exact times

of censoring (in the ordered data set), but rather one only needs the number of obser-

vations censored in between two uncensored observations. One of the consequences

of this is that, given the PL-type estimator, it is not possible to recover the exact

censoring times. In contrast, to compute ̂̄
FNPB(u) and ̂̄

FNPEB(u), one needs the

number observations censored in between uncensored observations as well as the ex-

act times of censoring. Thus, the Bayes and empirical Bayes estimators accommodate

the exact times of censoring. Note that given the nonparametric Bayes estimator, it

is possible to recover the distinct censoring times.

Except in the simulation studies, we did not consider here the models for corre-

lated inter-event gap-times since the manuscript is already long. In a forthcoming

manuscript we will be considering nonparametric Bayesian inference with correlated
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gap-times and in the presence of covariates.
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Chapter 3

Semiparametric Bayes Inference of Gap-Time

Distribution with Recurrent Event Data 1

Abstract

Recurrent event data arise from a wide variety of studies/fields such as clinical

trials, epidemiology, public health, biomedicine (e.g. repeated heart attack, re-

peated tumor occurrences of a cancer patient). Semiparametric Bayes inference

of the gap-time survivor function with the effect of covariates of a correlated

recurrent event in the presence of censoring is considered. A frailty model is

considered to allow the association between inter-occurrence gap-times. We

assume that for a subject or unit given the unobserved frailty variable W = w,

the inter-occurrence gap-times {Tj , j ≥ 1} are IID with some distribution

function F (· |W = w). In our procedure, we assign a Gamma process prior on

the baseline cumulative hazard function Λ0 and parametric prior distributions

on the finite dimensional parameters associated with covariates and frailty.

We derive the conditional posterior distributions from the joint posterior dis-

tribution of the unknown parameters of interest and employ Gibbs sampler

techniques to obtain samples from the joint posterior distribution. Simulation

studies demonstrate the effectiveness of the developed method. The Peña et

al.’s (2001) estimator of F̄ for correlated recurrent event data without covari-

ates is a special case of our developed estimator with the precision parameter

of the gamma process prior tending to zero.

1A.K.M. Fazlur Rahman and Edsel A. Peña. To be submitted to Biometrics.
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3.1 Introduction

Recurrent events frequently arise in biomedical studies involving subjects with some

treatable diseases (e.g. asthma, leukemia, tumors) with or without immediate risk

of death. Examples of recurrent events are re-occurrence of a tumor in bladder can-

cer patients (Byar (1980)), repeated mammary tumor occurrences in carcinogenesis

studies (Gail et al. (1980)), successive seizures in epileptic patients (Albert (1991)),

and repeated hospitalizations of a patient with cardiovascular disease. The primary

research interest in recurrent event analysis is to investigate whether the treatment

is effective in reducing the hazard rate of further re-occurrence of an event.

Several models and methods have been considered for the analysis of recurrent

event data. These models include complete intensity approach (e.g., Andersen et al.

(1993); Prentice et al. (1981)), the marginal rate approach (Pepe and Cai (1993);

Lawless and Nadeau (1995b); Lin et al. (2000)), and the inter-event gap-time approach

(e.g. Peña et al. (2001); Peña et al. (2007)). The main differences between the

various methods proposed is the function that is modeled or the parameter of interest.

Methods based on the gap-time formulation are intuitively more appealing because

they address questions, such as the distribution of time to next event occurrence for

a subject who has already experienced some events.

The analysis of recurrent event data based on gap-times yields estimates of re-

gression coefficients as well as an estimate of the gap-time distribution function. In

many biomedical/epidemiological applications we may only be interested in the ef-

fects of covariates on the event occurrences. However, in reliability settings one may

also be interested in the baseline survivor or baseline cumulative hazard function as

well as the effect of covariates on the hazard rate of event occurrences. The Bayesian

paradigm provides more general estimators in the sense that nonparametric Bayes

estimators often are in the form of a linear combination of the prior measures and
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Figure 3.1: Graphical representation of a recurrent event mammary tumors dataset
(Gail et al. (1980)). A sample of the mammary tumors data where first 23 units are
in the treatment group and the remaining are in the control group.
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the corresponding nonparametric estimators. Rahman et al. (2014) considered non-

parametric Bayes estimation of a gap-time distribution with recurrent event data

assuming the gap-times are independent and identically distributed (IID) from some

distribution function F . In biomedical applications IID assumptions are somewhat

restrictive as the gap-times could be correlated.

In this chapter, we consider semiparametric Bayesian inference of correlated gap-

times with recurrent event data. Consider an arbitrary subject (subscript omitted)

in the study for the occurrence of a recurrent event over the monitoring period [0, τ ],

where τ could be a pre-specified study termination time or some other random termi-

nation time. Denote by S1, S2, S3, . . . , the successive calendar times of event occur-

rences and T1, T2, T3, . . . , the successive inter-event gap-times of the event occurrences,

so that

Tj = Sj − Sj−1, j = 1, 2, 3, . . . , with S0 ≡ 0.

Denote by

K = max{k ∈ {0, 1, 2, . . . , } : Sk ≤ τ}

the number of event occurrences for a subject within the monitoring period. It is

assumed that gap-times and monitoring times are mutually independent. Let W be

an unobserved random variable from the Gamma distribution with shape and rate

parameter equal to ν. A frailty model is considered to accommodate the correlation

between gap-times of the recurrent event for a subject. That is, given W = w, we

assume that gap-times Tj, j = 1, 2, 3, . . . , are IID from F (· | W = w). Denote the

q-dimensional observable covariate vector by X = (X1, X2, . . . , Xq).

We consider the intensity function defined by

λ(t | W = w,X = x) = λ0(t)w exp(βTx),

where λ0(t) is the baseline hazard function of the distribution F0 and β is a vec-

tor of regression coefficients. The parameters of interest are the baseline cumulative
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hazard function Λ0(t) =
∫ t
0 λ0(u)du, regression parameter associated with covariates

β, and the frailty parameter ν. The Baseline hazard function λ0(·) is specified non-

parametrically while β and ν are finite dimensional parameters. In our Bayesian

approach, following Kalbfleisch (1978) and Sinha (1993), we assign a gamma process

prior on Λ0(·) and parametric prior distributions such as the multivariate normal and

Gamma on β and ν, respectively. The conditional posterior distributions of Λ0(·), β,

and ν are derived from the joint posterior distribution. Though W is unobservable,

we need to replace it by an estimator because the conditional distribution of Λ0(·),

and thus the closed form posterior mean of Λ0(·), involve W . We employ Gibbs

sampling techniques to sample from the joint posterior distribution. Under an inte-

grated squared error loss function posterior means are our Bayes estimators. Credible

intervals of the parameters of interest are readily available from the posterior samples.

The Breslow-Aalen type estimators of the baseline cumulative hazard function can

be recovered as a limiting case of our proposed estimator. The proposed estimators

are robust in the sense that the parameter estimates is not sensitive to choice of the

prior distribution. Simulation studies demonstrate the effectiveness of the developed

procedure. Biases and root mean-squared errors of the baseline survivor functions

are also examined for different combinations of parameters and sample sizes.

The rest of this chapter is organized as follows. In Section 2, we describe the

frailty model for the gap-time distribution. In Section 3, we define notation, derive

likelihood and conditional posterior distribution of the parameters of interest with

MCMC tools. Section 4 includes simulation studies where we assess performance

of the proposed estimators in terms of their bias, standard deviation and MCMC

convergence. In Section 5, we use bladder cancer data analyzed by Wei et al. (1989)

and Gail et al. (1980)’s mammary tumors data to illustrate our methodology. Section

6 provides some concluding thoughts.
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3.2 Frailty Model

Consider n units are in the study and let W1,W2, . . . ,Wn be independent and iden-

tically distributed (IID) positive-valued random variables known as frailties from a

parametric distribution H(w; ν). More precisely, the Wi’s are assumed to be an

IID gamma variables with unit mean and variance 1/ν; that is Wi ∼ Ga(ν, ν), i =

1, 2, . . . , n. Note that the mean of the Wi is taken to be 1 to make ν identifiable.

Given the unobserved frailty variable Wi, we assume that the successive inter-event

times (gap-times) for the ith unit, denoted by {Tij, j = 1, 2, . . .}, are IID nonnegative

random variables with a common distribution function

F̄ (t | W = w) =
[
F̄0(t)

]w
= exp(−wΛ0(t)),

where F̄0(t) and Λ0(t) =
∫ t

0 λ0(u)du with λ0(t) = dF0(t)
F̄0(t) are the baseline survivor

function and cumulative hazard function, respectively. Note that conditionally, gap-

times { Tij } are independent, but unconditionally they are dependent. The ith unit

will be observed over [0, τi] where τ1, τ2, . . . , τn are IID with a common distribution

function G. It is assumed that τi and {Tij, j = 1, 2, . . .} are mutually independent.

The marginal survivor function of {Tij } is therefore given by

F̄ (t) = E[F̄0(t)W ] =
[

ν

ν + Λ0(t)

]ν
.

A smaller value of ν is an indication of stronger correlation between gap-times whereas

a larger value of ν suggests weaker correlation between gap-times. For instance, when

gap-times are governed by the exponential distribution with Λ0(t) = ηt, then,

Corr(T11, T12) = 1/ν, ν > 2.

Similarly, in the presence of observable covariates X = x, given W = w, we assume

{Tij, j = 1, 2, . . . , } are IID with common distribution

F̄ (t | W = w,X = x) =
[
F̄0(t)

]w exp(βTx)

= exp
[
−w exp(βTx)Λ0(t)

]
.
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Therefore we consider the intensity function defined by

λi(t | Wi, Xi) = Wiλ0(t) exp(βTXi), (3.1)

where β is a vector of parameters associated with the covariates. For the ith unit the

number of observed event occurrences is

Ki = max{k ∈ {0, 1, . . .} : Sik ≤ τi},

where Si0 = 0 and Sik = ∑k
j=1 Tij, k = 1, 2, . . . , and the observable random vector is

D∗i = (τi,Xi, Ki, Ti1, Ti2, . . . , TiKi , τi − SiKi).

3.3 Bayesian Inference

3.3.1 Likelihood

In general we consider the case s <∞ and let Bi(v) = v − SiN†i (v−) be the backward

recurrence time. Define the counting process and “at risk” processes via

N †i (s) =
∞∑
j=1

I{Sij ≤ s, Sij ≤ τi} and Y †i (s) = I{τi ≥ s},

respectively. Let D∗ = {D∗i }ni=1. Then, following Jacod (1975) or section II.7 of

Andersen et al. (1993) define the conditional likelihood function over [0, s] by

L(s | D∗,W1,W2, . . . ,Wn)

=
n∏
i=1

 ∏
v∈[0,s]

[
Wi exp(βTXi)λ0(Bi(v))

]N†i (∆v)


exp
{
−Wi exp(βTXi)

∫ s

0
Y †i (v)λ0(Bi(v))dv

}. (3.2)

Since in our Bayesian procedure we will assign a Gamma process prior on Λ0(·) we

need to further simplify our likelihood function for posterior calculations.
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Following Peña et al. (2000), we can write

∫ s

0
Y †i (v)λ0(Bi(v))dv

=
∫ s

0
I(τi ≥ v)λ0(Bi(v))dv

=
N†i ((s∧τi)−)∑

j=1

∫ Sij

Sij−1
I(τi ≥ v)λ0(v)dv +

∫ s∧τi

S
iN
†
i

((s∧τi)−)

I(τi ≥ v)λ0(v)dv

=
N†i ((s∧τi)−)∑

j=1

∫ Tij

0
I(Tij ≥ v)λ0(v)dv

+
∫ (s∧τi)−S

iN
†
i

((s∧τi)−)

0
I((s ∧ τi)− SiN†i ((s ∧ τi)−) ≥ v)λ0(v)dv

=
∫ s

0

N
†
i ((s∧τi)−)∑
j=1

I{Tij ≥ v}+ I{(s ∧ τi)− SiN†i ((s ∧ τi)−) ≥ v}

λ0(v)dv

=
∫ s

0
Yi(s, v)λ0(v)dv,

where

Yi(s, v) =
N†i ((s∧τi)−)∑

j=1
I{Tij ≥ v}+ I{(s ∧ τi)− SiN†i ((s∧τi)−) ≥ v}.

When s→∞,

Yi(s, v)→
Ki∑
j=1

I{Tij ≥ v}+ I{τi − SiKi ≥ v} ≡ Yi(v).

In fact the above relation holds true when s ≥ τi. Let t(1), t(2), . . . , t(M) be the M

partition points on <+ = (0,∞) with t(0) ≡ 0 and t(M+1) ≡ ∞ such that Yi(s, v) is

constant within each subinterval (t(j−1), t(j)]. Define

Λ0(∆t(j)) = Λ0(t(j))− Λ0(t(j−1)), j = 1, 2, . . . ,M,M + 1.

Then, ∫ s

0
Yi(s, v)λ0(v)dv =

M+1∑
j=1

Yi(s, t(j))Λ0(∆t(j))

Similarly, we can write the product integral as a finite product as follows.

∏
v∈[0,s]

[
Wi exp(βTXi)λ0(Bi(v))

]N†i (∆v)
=

M+1∏
j=1

[
Wi exp(βTXi)Λ0(∆t(j))

]N†i (∆t(j))
,
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where

N †i (∆t(j)) = N †i (t(j))−N †i (t(j−1))

Let s ≥ max1≤i≤n{τi}. Then, using the above notation we can rewrite the likelihood

(3.2) function as follows

L(Λ0(·), β, ν | D∗,W1,W2, . . . ,Wn) =
n∏
i=1

Li, (3.3)

where

Li ≡ Li(Λ0(·), β, ν | D∗i ,Wi)

=


M+1∏
j=1

[
Wi exp(βTXi)Λ0(∆t(j))

]N†i (∆t(j))


exp

−Wi exp(βTXi)
M+1∑
j=1

Yi(t(j))Λ0(∆t(j))


. (3.4)

3.3.2 Prior Specifications and Conditional Posteriors

The unknown parameters of interest are (Λ0(·), ν, β), however, we also derive the

conditional distribution of the unobservable frailty vector W1,W2, . . . ,Wn as those

will be involved in the Bayes estimator of Λ0(·). Following Kalbfleisch (1978), we

assume Λ0(·) has a gamma process prior

Λ0(·) ∼ Gc,Λ∗0(·),

where Λ∗0(·) is a completely known mean intensity function and c is a precision of the

prior measure. Then,

Λ0(∆t(j)) ∼ Ga(cΛ∗0(∆t(j)), c).

We use the notation π(Λ0(∆t(j))) to indicate the prior distribution of Λ0(∆t(j)) and

so on. That is

π(Λ0(∆t(j))) ≡ Ga(cΛ∗0(∆t(j)), c), j = 1, 2, . . . ,M + 1. (3.5)
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We consider the prior of ν as a Gamma distribution with a known shape γ and scale η

and the prior of β as the multivariate normal distribution with a known mean vector

µβ and a variance-covariance matrix Σβ denoted, respectively, by

π(ν) ≡ Ga(γ, η) (3.6)

and

π(β) ≡ Nq(µβ,Σβ). (3.7)

Using (3.3) and priors (3.5), (3.6), and (3.7) we define the joint posterior distribution

of {Λ0(·), ν, β} via,

p(Λ0(·),W, ν, β | D∗) ≡
n∏
i=1

[Li(Λ0(·), ν, β | Wi)]π(Λ0(·))π(ν)π(β). (3.8)

Let

ri = exp(βTXi)
∫ ∞

0
Yi(v)Λ0(dv) ≡ exp(βTXi)

M+1∑
j=1

[
Yi(t(j))Λ0(∆t(j))

]
and

r∗i (t(j)) = exp(βTXi)Yi(t(j)).

Define N(∆t(j)) = ∑n
i=1

[
N †i (t(j))−N †i (t(j−1))

]
. Clearly N †i (s) = Ki for s ≥ τi.

Then, the conditional posterior distributions follow:

p(Λ0(∆t(j)) |W, ν, β)

∝ Ga(N(∆t(j)) + cΛ∗0(∆t(j)), c+
n∑
i=1

Wir
∗
i (t(j))), j = 1, 2, . . . ,M + 1. (3.9)

Under an integrated squared-error loss function we obtain

Λ̃0(t |W, β, ν) =
M+1∑
j=1

[
N(∆t(j)) + cΛ∗0(∆t(j))∑n

i=1Wir∗i (t(j)) + c

]
I(t(j) ≤ t) (3.10)

This is not yet an estimator of Λ0(t) sinceWi’s are unknown. However, we can obtain

Ŵi to replace Wi using the following conditional posterior distribution.

p(Wi | Λ0(·), ν, β)

∝ WKi
i exp(−Wiri)gWi

(wi | ν) ∝ Ga(ν +Ki, ν + ri), i = 1, 2, . . . , n, (3.11)
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where gWi
(wi | ν) ∝ W ν−1

i exp{−Wiν}. Clearly Wi can be updated via

Ŵi = ν +Ki

ν + ri
, i = 1, 2, . . . , n, the posterior mean of Wi. (3.12)

Thus, we have a closed form estimator of Λ0(t | ·) given by

Λ̂0(t | β, ν) =
M+1∑
j=1

N(∆t(j)) + cΛ∗0(∆t(j))∑n
i=1 Ŵir∗i (t(j)) + c

 I(t(j) ≤ t) (3.13)

We can recover the Breslow-Aalen type estimator of the baseline cumulative hazard

function from our estimator by letting the precision parameter c→ 0. The conditional

posterior distribution of the frailty parameter ν is given by

p(ν | Λ0(·),W, β) ∝ Lm(ν, β,Λ0)π(ν), (3.14)

where the marginal likelihood Lm is defined by

Lm ≡
n∏
i=1

[∫ ∞
0

Li(λ0(·), β, ν | Di,Wi = wi)gW (w)dw
]
∝

n∏
i=1

[
Γ(Ki + ν)

(ri + ν)Ki+ν
νν

Γ(ν)

]
.

The conditional posterior distribution of β is given by

p(β | W,Λ0(·), ν) ∝ exp
[
n∑
i=1

Ki(βTXi)−
n∑
i=1

Wiri

]
π(β), (3.15)

where π(β) is as defined in (3.7).

3.3.3 MCMC Sampling

The conditional posterior distribution of Λ0 and Wi, i = 1, 2, . . . , n as given in (3.9)

and (3.11), respectively, are in closed form and thus easy to draw samples or one

can update the estimators (3.10) and (3.12) in the Gibbs sampling algorithm. For

ν we employ Metropolis-Hastings (MH) algorithm to sample from the conditional

posterior (3.14). We sample β from the conditional posterior distribution (3.15) em-

ploying adaptive rejection sampling (ARS) (Gilks and Wild (1992)) since (3.15) is a

log-concave function. The MCMC algorithm follows:
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• Step 0: Start with initial

Λ(0)
0 (·),W (0), ν(0), and β(0)

• Step 1: Update

Λ̂0(· | W (0), β(0)).

Alternatively we could take samples from (3.9).

• Step 2: Using MH algorithm we sample ν from

p(ν | Λ0(·),W, β) ∝ Lm(ν, β,Λ0(·))π(ν).

More precisely, we propose

νcand ≡ ν ′ = exp(log(νcurr) + ε), where ε ∼ N(0, σ2
ν),

that is, the proposal density of ν is a log-Normal density,

q(ν ′ | ν, σ2
ν) ≡ lnN(log(νcurr), σ2

ν),

and accept it with probability

min

1,

∏n
i=1

[
Γ(Ki+ν′)

(ri+ν′)Ki+ν
′

(ν′)ν′

Γ(ν′)

]
π(ν ′)q(ν | ν ′, σ2

ν)∏n
i=1

[
Γ(Ki+ν)

(ri+ν)Ki+ν
(ν)ν
Γ(ν)

]
π(ν)q(ν ′ | ν, σ2

ν)


where νcurr ≡ ν. Usually σ2

ν is chosen small for example σ2
ν = 0.52.

• Step 3: Update Wi, i = 1, 2, . . . , n using

Ŵi = ν + ki
ν + ri

.

Alternatively we could take samples from (3.11).

• Step 4: Sample β from

p(β | W,Λ0(·), ν) ∝ exp
[
n∑
i=1

Ki exp(βTXi)−
n∑
i=1

Wiri

]
π(β)

employing adaptive rejection sampling (ARS) since the conditional posterior

density is a log-concave function. Repeat steps 1-4 until convergence.
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Bias, variance, and credible intervals of the parameter of interest are immediately

available from the posterior samples.

3.4 Simulation Studies

3.4.1 Simulation Design

Simulation studies are performed to evaluate our proposed method and properties of

the parameter estimators numerically. More precisely, the goals of these studies are:

(i) to examine the effects of the sample size (n) on the distributional properties of

the estimators; (ii) examine bias, variance, and root mean-squared errors (RMSEs)

of the baseline survivor function (pointwise); and (iii) examine the convergence of the

MCMC algorithm. We describe the settings for different simulation parameters with

their priors.

Baseline cumulative hazard function with priors: We generate the baseline cu-

mulative hazard function Λ0(·) associated with the gap-time from the Weibull dis-

tribution with unit scale and shape parameter, γ ∈ {1.1, 0.9}. We specify Λ0(·)

nonparametrically and consider π(Λ0(∆t)) ≡ Ga(cΛ∗0(∆t), c), where Λ∗0(t) = t (cu-

mulative hazard function from the unit exponential distribution) and c = 0.1. In this

case the prior is misspecified. We also assign another prior which is a naive estimator

of Λ0(t) given by

Λ∗0(t) =
M+1∑
j=1

[
N(∆t(j))∑n
i=1 Yi(t(j))

]
I(t(j) ≤ t). (3.16)

Covariates with priors for regression coefficients: We generate two covariates X1,

and X2, where X1 is a binary variate taking 0 or 1 with probability 0.5 and X2 ∼

N(0, 0.52) with X1 and X2 independent. The regression parameters are set to be

(β1, β2) = (−1, 1). Priors of β1 and β2 are denoted by π(β1) ≡ N(−.5, 1) and π(β2) ≡

N(.5, 1), respectively. Note that

p(β1 | W,Λ0, β2, ν) ∝ exp [β1Ktrt − exp(β1)rtrt] π(β) = θKtrt exp[−θ rtrt]π(β),(3.17)
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where θ ≡ exp(β1), Ktrt = total number of events occurrences for the treatment

(X1 = 1) group and rtrt = ∑
i∈{trt} [Wi exp(β2X2i)

∫∞
0 Yi(v)Λ0(dv)] . With a non-

informative flat prior for β1, the above conditional distribution (3.17) is proportional

to the Gamma distribution with shape Ktrt and rate rtrt. Similarly,

p(β2 | W,Λ0, β1, ν) ∝ exp
[
β2

n∑
i=1

KiX2i −
n∑
i=1

[exp(β2X2i)r1i]
]
π(β), (3.18)

where r1i = Wi exp(β1X1i)
∫∞

0 Yi(v)Λ0(dv). Clearly, both (3.17) and (3.18) are log-

concave function. Thus, in the MCMC sampling we employ adaptive rejection sam-

pling (Gilks and Wild (1992)) algorithm for the log-concave function to sample from

(3.17) and (3.18).

Frailty component with a prior: The parameter ν of the gamma distribution generat-

ing the frailty variableW is set to be {2, 5}. Prior for ν is defined by π(ν) ≡ Ga(2, .5).

Censoring variate: We consider censoring variable τi, i = 1, 2, . . . , n are IID from a

continuous uniform distribution U(1, 5).

Sample size: We choose n ∈ {100, 200, 300} to examine the impact of different sample

sizes on bias, variance, and convergence of the parameter estimators.

For each combination of these simulation parameters, we compute the mean and

standard deviation of the estimates of the parameters and averaged pointwise biases

and RMSEs for the baseline survivor function based on 100 data sets. We set the

end of monitoring time to τ = 5 and thus we only need to compute the cumulative

hazard function over the interval (0, 5].

3.4.2 Simulation Results

Table 3.1 summaries the mean values and standard deviations, of the sampling dis-

tributions of the estimators of β1, β2, and ν for each combination of γ ∈ {1.1, 0.9},

ν ∈ {2, 5}, and n ∈ {100, 200, 300}. In the discussion of the simulation results we will

examine the effect of changing n, changing ν and changing γ on the distributional
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properties of the estimators of β, ν, and biases and RMSEs of the estimator of the

baseline survivor function F̄0.

Table 3.1: Summary of Simulation Results

n ν γ β̂1 σ̂β̂1
95%CP β̂2 σ̂β̂2

95%CP ν̂ σ̂ν̂ 95%CP
100 2 1.1 -0.97 0.23 0.84 0.95 0.20 0.87 2.74 0.83 0.93
200 2 1.1 -0.97 0.13 0.89 0.96 0.16 0.88 2.30 0.56 0.96
300 2 1.1 -0.99 0.11 0.94 0.98 0.10 0.94 2.13 0.35 0.98
100 5 1.1 -0.98 0.17 0.88 0.98 0.18 0.88 5.16 1.31 0.98
200 5 1.1 -1.00 0.13 0.90 0.98 0.10 0.94 5.51 1.36 0.99
300 5 1.1 -1.01 0.10 0.92 0.99 0.09 0.95 5.38 1.40 0.96
100 2 0.9 -0.98 0.19 0.90 0.95 0.19 0.93 2.69 0.93 0.94
200 2 0.9 -0.99 0.15 0.93 0.97 0.14 0.93 2.35 0.68 0.94
300 2 0.9 -0.99 0.10 0.95 0.98 0.13 0.95 2.22 0.45 0.95
100 5 0.9 -0.98 0.18 0.95 0.95 0.18 0.91 5.31 1.48 0.94
200 5 0.9 -0.99 0.12 0.97 0.97 0.11 0.92 5.23 1.37 0.94
300 5 0.9 -1.00 0.10 0.99 0.98 0.10 0.94 5.20 1.30 0.95

As is expected the standard deviation decreases when the sample size increases

for all combination of the parameters ν ∈ {2, 5} and γ ∈ {1.1, 0.9}. For n = 100

with ν = 2 there is a considerable bias for the estimate of ν. Larger values of ν

(e.g., ν = 5), resulting into a weaker correlation between gap-times, contributing to

a smaller standard deviation for the parameter estimates of β1 and β2. However,

for ν = 2, its standard deviation increases as the sample size increases. For all

combination of parameters values with sample size 200 and 300 the estimates are

close to the true parameters.

We also investigate the point-wise biases and RMSEs of the baseline survivor

function for different combination of parameter values and the resulting graphs are

presented in Figure 3.2. As the sample size increases the biases and RMSEs decreases.

While generating the gap-times we consider both increasing failure rate (IFR) and

decreasing failure rate (DFR) Weibull baseline distribution with shape parameter

γ = 1.1 and γ = 0.9, respectively. However, here we report the result for γ = 1.1 with

different sample sizes. Convergence of MCMC algorithm are checked by “CODA”
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Figure 3.2: Simulated biases and root mean-squared errors (RMSE) for the estimator
of the baseline survivor function F̄0 as the sample size increases [ n=100 is red and
solid; n=200 is blue and dotted; n=300 is purple and dashed]. Weibull shape γ = 1.1.

(Plumber et al. 2012, http://cran.r-project.org/web/packages/coda/coda.pdf) pack-

age available in R. As the sample size increases the estimators converge to the true

parameters at a faster rate.

3.5 Data Analysis

We illustrate our methodology using the mammary tumors data given in Gail et al.

(1980) and the bladder cancer data available in Wei et al. (1989). First, we will
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analyze mammary tumors data where the gap-times are the time between tumor

occurrences in 48 rats in that 23 of them are in the treatment group and the other 25

are in the control group. The only covariate is the treatment. That is X = 1 indicates

that the subject is in the treatment group and X = 0 means that the subject is in

the control group. The main objective of their analysis is whether the treatment

is effective in reducing the hazard of tumor occurrences. Gail et al. (1980) analyze

each gap-time separately (e.g. first gap-times for all units and so on) ignoring the

recurrent nature of event occurrences and the possibility of correlation between gap-

times. More details of the data set and a description of the clinical trials are given

in Gail et al. (1980).

Table 3.2: Summary estimates for the mammary tumors data

Parameter Estimate Std 95% Credible Interval

β (Treatment) -0.660 0.17 (-0.996, -0.333)
ν 4.586 1.88 (2.071, 9.651)

In our Bayesian analysis we consider two priors for the baseline cumulative hazard

Λ0(·) such as Gamma process prior with known mean intensity Λ∗0(t) = tγ, γ = 1.1

with c = 0.1 and the empirical prior given in (3.16). We assume π(β) ≡ N(−1, 1)

and π(ν) ≡ Ga(2, .5). We choose distinct ordered censored observations as partition

points and the end of study time is tM = 122. However, the length between two

successive partition points can be very small such as one unit. The choice of partition

length is not sensitive to the estimates of the parameters. To obtain estimates of the

parameters of interest we follow the algorithm given in MCMC sampling section.

Note that for one dimensional binary covariate with non-informative flat prior the

conditional posterior distribution of exp(β) = β′ is the Gamma distribution with
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Figure 3.3: Survivor function of the treatment group (solid line) and control Group
(long dash line) with credible intervals. Dotted lines are credible interval for the
treatment group and dashed line are credible intervals for the control group.

shape parameter Ktrt = total number of tumor occurrences for treatment group and

the rate parameter rtrt = ∑
i∈{trt} [Wi

∫∞
0 Yi(v)Λ0(dv)] . Adaptive rejection sampling

also yields identical result.

The parameter estimates associated with the treatment and the frailty random

variable with standard deviation and credible intervals are presented in Table 3.2.
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We obtained β̂ = −0.66, σ̂β = 0.17 and the 95% credible interval is (−0.99,−0.33).

The estimate of β with its credible interval indicates that the treatment is effective in

reducing the hazard rate of tumor occurrences. The estimate of ν suggests that gap-

times are not strongly correlated. Survivor function estimates with credible intervals

are presented in Figure 3.3, where upper curve (solid line) is the survivor function

with 95% credible intervals (dotted lines) for the treatment group, while lower curve

(long dashed line) is the survivor function with 95% credible intervals (dashed line)

for the control group. Figure 3.3 demonstrates that there is no clear evidence that

the treatment group has a higher survival rate than the control group as the credible

intervals are overlapped.

Table 3.3: Summary estimates for the bladder cancer data

Variable Parameter Estimate Std 95% Credible Interval

rx β1 -0.36 0.19 (-0.740, 0.003)
size β2 -0.01 0.06 (-0.130, 0.100)

number β3 0.14 0.05 (0.040, 0.240)
frailty ν 6.30 3.00 (2.210, 13.800)

The second biomedical application is the bladder cancer data analyzed by Wei

et al. (1989), which is also available in survival package (Therneau and Lumley (2009))

in the R library. These data include the times to re-occurrences of tumors of bladder

cancer patient for n = 85 subjects. Three covariates of interest are X1, the treatment

indicator (0= placebo; 1= thiotepa); X2, the size (in centimeter) of the largest initial

tumor; and X3, the number of initial tumors. For our estimation purpose we assume

similar priors for the parameters β and ν such as Normal and Gamma distributions,

respectively.

The summary of the parameter estimates (bladder cancer) is presented in Table
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Figure 3.4: Survivor function of the treatment group (solid line) and control Group
(long dash line) with credible intervals. Dotted lines are credible interval for the
treatment group and dashed line are credible intervals for the control group.
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3.3. The estimate of β1 (treatment) indicates that there is no clear evidence that the

treatment is effective in reducing the bladder tumor occurrences since the credible

interval includes zero. The initial size of the largest tumor is not a significant factor

for reducing or increasing tumor recurrences. Estimates of β3 with its credible interval

suggest that initial number of tumor occurrences is an indication of increasing number

of tumor re-occurrences. The estimates of survivor function for the treatment group

and control group are computed at the mean values of X2 and X3 and Figure 3.4 is

the resulting survivor function graph. Figure 3.4 seems to indicate that the thiotepa

(treatment) group has a higher survival rate than the control group.

3.6 Concluding Remarks

In this chapter, we developed a semiparametric Bayesian inference procedure of the

gap-time distribution with recurrent event data. This is a more general framework

in the sense that the Breslow-Aalen type estimator of the baseline cumulative haz-

ard function is a limiting case of our estimator by letting precision parameter tends

to zero. In our procedure, we are able to assess the effects of treatment on event

occurrences as well as estimate the baseline survivor function which is often an in-

terest in reliability engineering applications. The proposed estimation procedure can

easily be implemented as the baseline cumulative hazard function has a closed form

estimator and the estimates of the parameter associated with covariates and frailty

are easily implemented by ars() and by Metro-Hastings() package in R, respectively.

Credible intervals are immediately available from the posterior samples. Through the

procedure we are able to obtain the individual frailties. A frailty greater than one

indicates that the individual is more prone to event occurrences and vice-versa. A

larger value of ν̂ is an indication of weaker correlation between gap-times. Simulation

studies demonstrate that parameter estimates are robust to some misspecification of

the prior distribution.
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In our procedure we assumed that censoring is independent of recurrent events.

In many situations, however, there exists a terminal events (e.g. death), which pre-

vent the occurrences of future events. Moreover it is often the case that the terminal

event is strongly correlated with recurrent event occurrences. In particular, increasing

the number of event occurrences could potentially increase the risk of death. Thus

noninformative termination assumption may not be appropriate in some situations.

Miloslavsky et al. (2004b) showed that regression parameter estimates in the recur-

rent event analysis are biased when dependent termination is ignored. One way of

accommodating the dependent termination is to consider the joint modeling of recur-

rent event and terminal events. One of my future research goals is to a develop joint

Bayesian inference procedure of recurrent and terminal events.
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Chapter 4

Nonparametric Bayes Estimation of Reliability

of a Coherent System 1

Abstract

Simultaneous estimation of system and components reliabilities is considered

when independent partition-based Dirichlet (PBD) priors are assigned on com-

ponent lifetime distributions. Denote the lifetime of component j in the i-th

system by {Tij , j = 1, 2, 3, . . . ,K} and the end of system monitoring time

by {τi, i = 1, 2, . . . , n}. Assume that {Tij , i = 1, 2, 3, . . . , n} and {τi, i =

1, 2, . . . , n} are IID with distribution Fj and G, respectively, and with {Tij}s

and {τi}s mutually independent and Tij and Til also independent for j 6= l. In

our nonparametric Bayesian approach we assign independent partition-based

Dirichlet (PBD) priors, D(αj), on Fj , j = 1, 2, . . . ,K, with the parameter αj

being a non-null finite measure on <+. We derive the nonparametric Bayes

estimator of component reliabilities, F̄j = 1 − Fj for j = 1, 2, . . . ,K, and an

estimator of the system reliability function F̄φ(t) = hφ(F̄1(t), F̄1(t), . . . , F̄K(t)),

where φ is the structure function of the system. The estimator of the system

reliability function presented in Doss et al. (Annals of Statistics, 1989) is a spe-

cial case of our estimator, obtained by letting αj(<+)→ 0 for j = 1, 2, . . . ,K.

Through simulation studies, we demonstrate that the nonparametric estimator

has smaller bias, but higher root-mean-squared errors (RMSE) than our pro-

posed estimator. Even when the prior mean functions do not coincide with the

1A.K.M. Fazlur Rahman and Edsel A. Peña. To be submitted.
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true distribution functions, the Bayes estimator has smaller or equal RMSE

than the nonparametric estimator with a smaller value of precision parameter,

indicating robustness of our estimator. In addition, our proposed estimator is

smoother in some sense than the Doss et al. (1989) estimator.

4.1 Introduction

The lifetime of a sold/deployed system is a common interest for both the client and

manufacturer as it is a meaningful measure of the quality of a system. Therefore it

has been of interest to assess the risk of a failure and the reliability of systems in

many settings, for instance in the mechanical, engineering, biomedical, military, and

business areas. Precise and reliable knowledge of the performance of deployed systems

enables the informed assessment of the risk and failure of the system that could

potentially save life, wealth, and prevent destruction. It is therefore imperative to

have probabilistic and statistical inferential methods to assess the risk and reliability

of systems.

We begin with a brief review of relevant published literature, followed by some

notations and definitions relevant to reliability of coherent systems. Meilijson (1981)

considered estimation of F based on system failure times together with components

failure times (autopsy statistics), whereas Moeschberger and David (1971) considered

estimation of F under IID assumptions in the competing risk framework. Estimation

of F under rank set sampling when systems on the test are k-out-of-K systems is

considered by Kvam and Samaniego (1994) and Stokes and Sager (1988). Estimation

of load sharing properties in a dynamic reliability system is considered by Kvam and

Peña (2005). Joint estimation of components and system reliabilities is considered by

Doss et al. (1989). In addition, inferential problems to assess the risk and reliability

of systems has, among others, been considered by Barlow and Hunter (1960), Barlow

and Marshall (1967), Barlow and Proschan (1969, 1986), Barlow (1984, 1985, 1986),
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Boyles et al. (1985), El-Neweihi et al. (1978), Esary and Proschan (1963), Esary et al.

(1971, 1970), Hollander and Proschan (1984), Hollander and Peña (1995, 1996a,b,

2004), Langberg et al. (1981), and Peña and Hollander (2004). However, most of these

works considered frequentist parametric/semi-parametric or nonparametric inference

of system reliability.

The classical form of making inference is an ideal situation when the parametric

assumptions of the distribution function match with the true distribution function

but it becomes worse in the case of a misspecified parametric family of distribu-

tions. However, in the nonparametric Bayesian framework we can incorporate our

prior knowledge in developing a robust estimation procedure to assess the reliability

of a coherent system, which is still in development stage in the reliability litera-

ture. Thus it is worthwhile to develop Bayesian inferential methods to assess the

risk and reliability of components and coherent systems and to compare their perfor-

mance with existing methods. In our nonparametric Bayesian framework, we assign

a partition-based Dirichlet prior (Sethuraman and Hollander (2009)) on F and the

resulting posterior measure is also a partition-based Dirichlet measure. We develop a

robust estimation procedure where our estimator of F̄ is closed form and exact, and

is a linear combination of the prior mean function and a corresponding nonparamet-

ric estimator. We define some notation and recall some definitions associated with

coherent structure and system reliability based on Barlow and Proschan (1981).

A reliability system is composed of a finite number of components, with each

component possibly a subsystem itself. For a reliability system with K components,

denote the state vector of components by x = (x1, x2, . . . , xK), with xj ∈ {0, 1} such

that xj = 1 if component j is functioning and xj = 0 if component j is not functioning.

The structure function of a reliability system is defined by φ : {0, 1}K → {0, 1} such

that φ(x) indicates whether the system is in a functioning state (φ(x) = 1) or is

in a failed state (φ(x) = 0). A reliability system is said to be a coherent system if

66



www.manaraa.com

the structure function φ(x) satisfies the two conditions that (i) it is nondecreasing in

each argument, that is a change of state of one and only one component from a failed

state to a working state should not cause the system to change from a working state

to a failed state, and (ii) each component is relevant in the sense that, for each j ∈

{1, 2, . . . , K} there exists an x ∈ {0, 1}K such that 0 = φ(x, 0j) < φ(x, 1j) = 1, where

(x, 0j) = (x1, . . . , xj−1, 0, xj+1, . . . , xK) and (x, 1j) = (x1, . . . , xj−1, 1, xj+1, . . . , xK).

See Barlow and Proschan (1981) for a comprehensive treatment of coherent system

reliability.

A series system and a parallel system are two common examples of coherent

reliability systems with respective structure functions

φser(x) = min{x1, x2, . . . , xK} =
K∏
j=1

xj

and

φpar(x) = max{x1, x2, . . . , xK} =
K∐
j=1

xj = 1−
K∏
j=1

(1− xj).

The coherent structure function of a more general k-out-of-K system is φk:K(x) =

I(∑K
j=1 xj ≥ k) with I(A) = 1 or 0 depending on whether event A does or does

not hold, respectively. Clearly, a series system (K-out-of-K system) and a parallel

system (1-out-of-K) are two extreme cases of k-out-of-K systems. A simple example

of another coherent structure is a 3-component series-parallel system (Figure 4.1) with

the structure function, φsp(x1, x2, x3) = min{x1,max{x2, x3}}. This system functions

as long as component 1 and at least one of component 2 and 3 are functioning.

Let Xk be the random variable indicating whether component k is in a functioning

state or not, and let pj = Pr{Xj = 1}, j = 1, 2, . . . , K. Let (X1, X2, . . . , XK) be inde-

pendent random variables, and define X = (X1, X2, . . . , XK) and p = (p1, p2, . . . , pK).

The reliability function associated with a structure function φ is defined by

hφ(p) = E{φ(X)} = Pr{φ(X) = 1}.

67



www.manaraa.com

Figure 4.1: Three Component Series-Parallel System

The reliability function for a series system is hser(p) = ∏K
j=1 pj, while for a parallel

system, it is hpar(p) = 1−∏K
j=1(1− pj). On the other hand, the reliability function

for the series-parallel system (Figure 4.1) is hsp(p1, p2, p3) = p1[1− (1− p2)(1− p3)].

The reliability function for the more general k-out-of K system is

hk:K(p) =
∑

{(x1,x2,...,xK)∈{0,1}K ;
∑K

j=1 xj≥k}

K∏
j=1

p
xj
j .

These reliability functions represent the probabilities that the systems are functioning

as a function of component reliabilities. Therefore it is useful to consider the com-

ponent and system lifetimes. Let T = (T1, T2, . . . , TK) be the vector of component

lifetimes and S be the system lifetime. For a given time t, the state vector of com-

ponents is denoted by X(t) = (I(T1 > t), I(T2 > t), . . . , I(TK > t)), hence the state

of the system at time t is given by φ(X(t)). As a result {S > t} = {φ(X(t)) = 1}.

Therefore the system lifetime survivor function is given by

F̄φ(t) = Pr{S > t} = Pr{φ(X(t) = 1} = E{φ(X(t))}.

Denote the component lifetime survivor functions by F̄j(t) = Pr{Tj > t}, j =

1, 2, . . . , K. If the component lifetimes are independent, then the system survivor

function could be expressed in terms of the system’s reliability function via

F̄φ(t) = hφ(F̄1(t), F̄2(t), . . . , F̄K(t)). (4.1)
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Assume n identical systems with the same structure function φ are in the study.

We monitor the ith system over a period of time [0, τi], where τi could be some

administrative time or some other time not related to the component failures. Denote

by S1, S2, . . . , Sn the system lifetimes and by τ1, τ2, . . . , τn the end of monitoring times.

However, we may not observe all of the system failure times as the monitoring period

of the i-th system terminated at τi, rather we only know that lifetime exceeded τi if

the system is still functioning at time τi. The random observable for the n systems

will therefore be

(V, ε) = ((V1, ε1), (V2, ε2), . . . , (Vn, εn)), (4.2)

where Vi = min{Si, τi} and εi = I{Si ≤ τi}. A nonparametric estimator of system

reliability function based on right-censored system lifetimes (V, ε) is the Kaplan and

Meier (1958) estimator also known as the Product-Limit estimator (PLE) given by

R̂PLE(t) =
∏
s≤t

[
1− ∆N(s)

Y (s)

]
=
∏
s≤t

[
Y +(s)
Y (s)

]
, t ∈ <, (4.3)

where ∏ means product-integral, and the processes N = {N(s) : s ∈ <} , Y =

{Y (s) : s ∈ <}, and Y + = {Y +(s) : s ∈ <} are defined via

N(s) =
n∑
i=1

I{Vi ≤ s; εi = 1}, Y (s) =
n∑
i=1

I{Vi ≥ s}, and Y +(s) =
n∑
i=1

I{Vi > s}.

(4.4)

Doss et al. (1989) developed a PL-type estimator of the system reliability function

when component failure times are available by exploiting the relationship between the

system reliability function and the component reliabilities, given in (4.1). The idea

implemented here is to use the j-th component’s right-censored data to estimate

F̄j, j = 1, 2, . . . , K, and then plug in these estimates in (4.1). In Doss et al. (1989)’s

approach, each system is monitored until it failed so that they observed all the system

failure times. Note, however, that any component’s failure time could be right-

censored. In our approach, the monitoring times could be fixed or random, and hence

we may not observe all the system failure times. Thus in our settings with autopsy
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statistics of component lifetimes, the random observables for both the system and

component failure times consist of complete and right-censored times.

Let Tij denote the lifetime of component j for the i-th system. Define Zij =

min{Tij, S∗ij, τi} and δij = I(Tij ≤ min{S∗ij, τi}). The right-censoring variable for Tij

involves S∗ij, where S∗ij is the lifetime of the original system with j-th component func-

tioning uninterruptedly. Note that S∗ij is independent of Tij but depends on the struc-

ture function. We can view the random variable S∗ij from the simple three-component

series-parallel system as shown in Figure 4.1 where right-censoring variable for T1 is

S∗1 = max{T2, T3}, which is assumed independent of T1. Similarly, the right-censoring

variables for T2 and T3 are S∗2 = min{T1, T3} and S∗3 = min{T1, T2}, respectively.

Denote by F the distribution of system lifetimes and assume F has partition-

based Dirichlet (PBD) prior measure (Sethuraman and Hollander (2009)) which is

defined formally in Section 4. The posterior distribution of F given the right-censored

observations of system lifetime is also a PBD. Under an integrated squared error

loss function, the Bayes estimator of F is the posterior mean. In a similar fashion,

assigning an independent PBD prior measure on each component distribution function

we estimate the distribution/reliability function for each component. Therefore joint

estimation of component reliability and system reliability is obtained by plugging in

the estimates of component reliability in (4.1).

We outline the contents of this Chapter. In Section 2 we review definitions and

results for the PBD prior and also develop some results to estimate the component

and system reliabilities. In Section 3 we drive the nonparametric Bayes estimator of

system reliability and jointly estimate the component reliability and system reliability.

We also explore the relationship between our proposed estimator and corresponding

PL-type estimator. Section 4 includes simultaneous studies for correctly specified

priors and misspecified priors and compares between proposed and PL-type estimators

in terms of bias and RMSE function. Section 5 is an illustration of the developed
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estimators with a randomly generated data set. An appendix gathers the technical

proofs.

4.2 Partition Based Dirichlet Prior and Posterior Measure

The partition based prior is a general class of priors introduced by Sethuraman

and Hollander (2009) in the context of repair models. However, this prior can be

used/extended as a nonparametric prior of the unknown distribution function F in

different data settings including single event with right-censored, interval-censored,

and truncated data settings. To define formally the notion of the partition based

(PB) prior and some relevant results, let (X ,A ) be a measurable space where A

is the σ-field of subsets of the space X and let P be the class of all probability

measures (p.m.’s) on (X ,A ). Let H be the class of all pm’s on (P,S ) where

S = σ({P : P (A) ≤ r, A ∈ A , 0 ≤ r ≤ 1}).

Dirichlet Process Probability Measure: Following Ferguson (1973) or Sethu-

raman (1994), let α(·) be a non-null finite measure on (X ,A ). A random prob-

ability measure (p.m.) on (P,S ) is said to be a Dirichlet probability measure

if for any measurable partition, B = {B1, B2, . . . , Bm} of X , the distribution of

P (B) ≡ (P (B1), P (B2), . . . , P (Bm)) is the finite dimensional Dirichlet distribution

D(α(B1), . . . , α(Bm)). Such a p.m. will be denoted by Dα.

Partitioned Based (PB) Measure: The partition based prior is a random mea-

sure restricted to a partition. Following Sethuraman and Hollander (2009), let

B = (B1, B2, . . . , Bm) be a measurable partition of the sample space X . ForH ∈H ,

and P ∼ H, the law of total probability gives

P (·) =
m∑
l=1

PBl(·)P (Bl) =
m∑
l=1

P (· | Bl)P (Bl)

where PB is the restriction of P to B defined by PB(A) = P (A ∩B)/P (B) for all A,

B ∈ A . PB is a restricted probability measure such that PB(B) = 1.
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We call H(B, h,G ) a partition based (PB) distribution if the following conditions

hold:

(a) The real random vector P (B) ≡ (P (B1), P (B2), . . . , P (Bm)) and restricted

random p.m.’s PBl , l = 1, 2, . . . ,m, are all independent.

(b) (P (B1), P (B2), . . . , P (Bm)) has the pdf ch(y) on the simplex Rm = {y : yl ≥

0, l = 1, . . . ,m;∑m
l=1 yl = 1}, where c is a normalizing constant and P (Bl) ≡ yl.

(c) G = G1 × . . .×Gm;PBl ∼ Gl, l = 1, 2, . . . ,m .

Partition Based Dirichlet (PBD) Measure: Let α(·) be a finite measure on

(X ,A ). For any non-empty set B ∈ A with α(B) > 0, let αB(A) = α(A ∩ B) for

all A ∈ A . If G = DαB1
× . . .×DαBm

, then H(B, h,G ) ≡ D(B, h, α) will be referred

to as a PB Dirichlet (PBD) measure. In this case,

h(y) = Γ(∑m
l=1 αl)∏m

l=1 Γ(αl)

m∏
l=1

yl
αl−1 (4.5)

is anm-dimensional multivariate Dirichlet distribution with parameter α = (α1, α2, . . . ,

αm) where αl = α(Bl).

The following result is a restatement of Lemma 1 of Sethuraman and Hollander

(2009) regarding Dα representation as a PBD distribution, D(B, h, α).

Result 1. Let α be a finite measure on (X ,A ) and let B = (B1, B2, . . . , Bm) be a

measurable partition of X . Let αl = α(Bl) for l = 1, 2, . . . ,m, and h(y) is as defined

in (4.5). Then Dα = D(B, h, α).

Let B = (B1, B2, . . . , Bm) be a measurable partition of X and let

B∗ = (B1, . . . , Br−1, Br1 , Br2 , Br+1, . . . , Bm)

be a finer partition of X . Then D(B, h, α) can be expressed as the PBD, D(B∗, h∗, α)

with an explicit expression of h∗ as shown in Theorem 1 of Sethuraman and Hollan-

der (2009). We restate the theorem as Result 2 here without proof. Consequently
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the results derived here holds true for any arbitrary partition. Thus we can choose

any partition of X , but in practice we choose the partition by looking at the right-

censored and/or left-truncated data for computational simplicity.

Result 2. Let B = (B1, B2, . . . , Bm) be a measurable partition of X and consider the

PBD D(B, h, α) where h is a pdf defined in (4.5) on the simplex Rm and α is a finite

measure on (X ,A ) with α(Br) > 0 for r = 1, 2, . . . ,m. Split the set Br as Br1 ∪Br2

with α(Br1) > 0, α(Br2) > 0 such that B∗ = (B1, B2, . . . , Br−1, Br1 , Br2 , Br+1, . . . , Bm)

is a measurable partition of X . Let

h∗(y1, . . . , yr−1, yr1 , yr2 , yr+1, . . . , ym)

= c∗h(y1, . . . , yr−1, yr, yr+1, . . . , ym)y
α(Br1 )−1
r1 y

α(Br2 )−1
r2

y
α(Br)−1
r

,

where yr = yr1+yr2 and c∗ is a normalizing constant. Then, D(B, h, α) = D(B∗, h∗, α).

Suppose that T1 is a complete observation and P | T1 ∼ P . Then the posterior

measure of P given T1 is given as Theorem 1.

Theorem 1. Let P have a PBD prior measure, D(B, h, α) and T1 be a sample from

P such that T1 | P ∼ P . Let B = (B1, . . . , Bm) be a measurable partition of X and

r be an index of {1, 2, . . . ,m} such that T1 ∈ Br. Then the posterior distribution of

P , given T1, is also PBD, D(B, h∗, α∗), where h∗(y) ∝ h(y)yr and α∗ = α + δT1 .

Proof: The proof follows from the Theorem 3 of Sethuraman and Hollander (2009)

with T1 | P ∼ P = PX , that is, P (X ) ≡ y1 + . . .+ym = 1. Thus, the denominator of

the Theorem 3 of Sethuraman and Hollander (2009) becomes 1. Hence the theorem

is proved. �

Suppose that T2 is a right-censored observation and we only know that T2 ∈ A

and A is the union of some sets in the partition B = (B1, B2, . . . , Bm), so that A

satisfies

A = ∪l∈EABl for some EA ⊆ {1, 2, . . . ,m}. (4.6)
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Theorem 2 follows from the Theorem 1 of Grego et al. (2013), which shows that

when the prior is a PBD, given the right-censored observations, the posterior is also

a PBD.

Theorem 2. Let P have a PBD measure D(B, h, α) and let T2 be a sample of

size one from P such that T2 | P ∼ P and T2 ∈ A, with A as defined in (4.6).

Then the posterior measure of P , given T2 ∈ A, is also PBD, D(B, h∗∗, α) where

h∗∗(y) ∝ h(y)yA and yA = ∑
l∈EA yl. Hence the theorem is proved. �

Theorem 2 is obtained when A is a union of sets in the partition B. When A is not

necessarily a union of sets in the partition B, we can form a larger partition B∗∗ with

restriction set A to the initial partition B which will ensure that A is a union of sets

in the partition B∗∗. It follows from the Result 2 that D(B, h, α) = D(B∗∗, h∗∗, α∗∗).

Therefore, whether A is the union of sets of the partition B or not Theorem 2 holds.

Let T1, T2, . . . , Tn be a random sample from P such that (Ti | P ) ∼ P, i =

1, 2, . . . , n. Without loss of generality, assume that T1, T2 . . . , Tn−m, are the uncen-

sored (complete) observations and T ∗(1), T
∗
(2), . . . , T

∗
(m) are m distinct right-censored

observations, where T ∗i = Tn−m+i, i = 1, 2, . . . ,m. Consider T ∗(1), T
∗
(2), . . . , T

∗
(m) be the

partition boundaries such that

B = (B1, B2, . . . , Bm, Bm+1) (4.7)

is a measurable partition of (0,∞), where Bl = (T ∗(l−1), T
∗
(l)], l = 1, 2, 3, . . . ,m, and

Bm+1 = (T ∗(m), T
∗
(m+1)) with T ∗(0) = 0 and T ∗(m+1) = ∞. The posterior measure of P

given all the censored and uncensored observations is given as Theorem 3.

Theorem 3. Let P have a PBD prior measure, D(B, h, α), where B is as defined in

(4.7). Let T1, T2 . . . , Tn−m, T
∗
(1), T

∗
(2), . . . , T

∗
(m) be a sample from P with T1, T2 . . . , Tn−m

being the ordered uncensored observations and T ∗(1), T
∗
(2), . . . , T

∗
(m) being the m right-

censored observations. Then the posterior measure, P | (T1, T2 . . . , Tn−m, T
∗
(1), T

∗
(2), . . . ,
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T ∗(m)) is the PBD, D(B, h∗, α∗), where

h∗(y) ∝ h(y)
[
m+1∏
l=1

yl
∑n−m

i=1 I(Ti∈Bl)
]
m∏
l=1

 m+1∑
j=l+1

yj

 ∝ [
m+1∏
l=1

yl
α∗l−1

]
m∏
l=1

 m+1∑
j=l+1

yj

 ,
and α∗ = α +∑n−m

i=1 δTi .

Proof: Repeated application of Theorem 1 for complete observations and repeated

application of Theorem 2 for right-censored observations together yield the desired

result. �

4.3 Nonparametric Bayes Inference of System Reliability

4.3.1 System Reliability Based on System Data

Recall that the random observables for the system lifetimes are ((V1, ε1), (V2, ε2), . . . ,

(Vn, εn)) where Vi = min(Si, τi) and εi = I(Si ≤ τi) for i = 1, 2, . . . , n. As-

sume that there are m right-censored observations and n−m complete observations.

To distinguish right-censored observations from complete observations, let {V ′i , i =

1, 2, . . . , n−m} be the n−m complete observations (εi = 1) and {V ∗j , j = 1, 2, . . . ,m}

be the m right-censored (εi = 0) observations. Let V ∗(1), V
∗

(2), . . . , V
∗

(m) be the partition

boundaries such that

B = (B1, B2, . . . , Bm, Bm+1)

is a measurable partition of (0,∞), where Bl = (V ∗(l−1), V
∗

(l)], l = 1, 2, 3, . . . ,m, and

Bm+1 = (V ∗(m), V
∗

(m+1)) with V ∗(0) = 0 and V ∗(m+1) = ∞. Our goal is to develop a

nonparametric Bayes estimator of F (t) ≡ P ((0, t]) ≡ P when a PBD process prior is

assigned on F and the right-censored system lifetimes are available. Let P have PBD

prior measure, D(B, h, α), where α = (α1, α2, . . . , αm, αm+1) and αl = α(Bl), l =

1, 2, . . . ,m + 1. Then the posterior measure of P is given in Corollary 1, follows

directly from the Theorem 3.

Corollary 1. Let P have PBD prior D(B, h, α) and V = (V ′1 , V ′1 , . . . , V ′n−m, V ∗(1), V
∗

(2),
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. . . , V ∗(m)) is a random sample from P with V ∗(1), V
∗

(2), . . . , V
∗

(m) being the m right-

censored observations. Then the posterior measure, P ∗ ≡ (P | V ), is also a PBD

measure, D(B, h∗, α∗), where

h∗(y) ∝ h(y)
m+1∏
l=1

[
yl
∑n−m

i=1 I(V ′i ∈Bl)
] m∏
l=1

 m+1∑
j=l+1

yj

 ∝ m+1∏
l=1

[
yl
α∗l−1

] m∏
l=1

 m+1∑
j=l+1

yj


and α∗ = α +∑n−m

i=1 δV ′i .

We obtain a nonparametric Bayes estimator of F , given a vector of random ob-

servables V , under the integrated squared-error loss function

L(F̂ , F ) =
∫

[F̂ (s)− F (s)]2ds, (4.8)

where F̂ (s) is an estimator of F (s).

Suppose that we want to estimate F (t) where t ∈ Bl, (l = 1, 2, . . . ,m,m + 1).

Note that P (·) = ∑m+1
i=1 PBi(·)P (Bi) where P (B) and {PBl} are independent. Under

the integrated squared-error loss function (4.8), the nonparametric Bayes estimator

of F (t) is the posterior mean which is

F̂ (t) ≡ E[P ∗((0, t])] =
l−1∑
j=1

E(Yj) + E(Yl) [α∗(Bl ∩ (0, t])/α∗(Bl)] (4.9)

where the expectations of Y are under the pdf proportional to h∗(y). Therefore, an

estimate of the system reliability function is ̂̄F (t) = 1− F̂ (t). For j = 1, 2, . . . ,m,m+

1, E(Yj) is given by

E(Yj) =
∫
yjh
∗(y)dy∫

h∗(y)dy . (4.10)

To see E(Yj), j = 1, 2, . . . ,m,m + 1, and thus an estimator of F̄ in closed form

we also define the following processes

Nj =
n∑
i=1

I(Vi ∈ Bj, εi = 1) and λj =
m∑
l=1

I(V ∗l = V ∗(j)), (4.11)

j = 1, 2, . . . ,m,m+ 1, with λm+1 = 0.

Lemma 1. Let Y (t), Y +(t), and Nj, λj, j = 1, 2, . . . ,m,m + 1, be the processes
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defined in (4.4) and (4.11), respectively. Then,

E(Yj) =
∫
yjh
∗(y)dy∫

h∗(y)dy = Cj(α∗l + I(l = j), λl, l = 1, 2, . . . ,m+ 1)
Cj(α∗l , λl, l = 1, 2, . . . ,m,m+ 1)

=
[
α(Bj) +N(Bj)
α(<+) + n

] j−1∏
i=1

α(V ∗(i),∞) + Y +(V ∗(i)) + λi

α(V ∗(i),∞) + Y +(V ∗(i))


 ,

where

Cj(α∗l + I(l = j), λl, l = 1, 2, . . . ,m+ 1)

=
m∏
l=1

B(α∗(Bl) + I(l = j), α∗[V ∗(l),∞) +
m∑

r=l+1
λr)


The nonparametric Bayes estimator of system reliability function F̄ (t) = 1− F (t) is

given as Theorem 4, which follows from the expression (4.9) using Lemma 1.

Theorem 4. Let P have PBD prior, D(B, h, α), and V = (V ′1 , . . . , V ′n−m, V ∗(1), V
∗

(2), . . . ,

V ∗(m)) be a vector of observables. Then for any t ∈ Bl ⊆ B, the nonparametric Bayes

estimator of F (t) is given by

F̂NPB(t) =
l−1∑
j=1

E(Yj) + E(Yl)α∗(Bl ∩ (0, t])/α∗(Bl)

=
l−1∑
j=1

E(Yj) + E(Yl)
[
α(Bl ∩ (0, t]) +N(Bl ∩ (0, t])

α(Bl) +N(Bl)

]
,

where E(Yl), l = 1, 2, . . . ,m,m+1, is given in Lemma 1 and V as defined in Corollary

1.

Equivalently,

̂̄
FNPB(t) =

m+1∑
j=l+1

E(Yj) + E(Yl)
[
α(Bl ∩ (t,∞)) +N(Bl ∩ (t,∞))

α(Bl) +N(Bl)

]
. (4.12)

The PL-type estimator in (4.3) is a limiting case of the proposed nonparametric Bayes

estimator ̂̄FNPB(t) when prior measure α→ 0, as given in Theorem 5.

Theorem 5. ̂̄
FNPB(t) α(R+)→0−−−−−→ R̂PLE(t).
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4.3.2 Pointwise Credible Intervals

To construct pointwise credible intervals for F̄ (t), we take sample from the posterior

measure given in Corollary 1. The density function associated with the posterior

measure is given by

h∗(y) ∝ h(y)
m+1∏
l=1

[
yl
∑n−m

i=1 I(V ′i ∈Bl)
] m∏
l=1

 m+1∑
i=l+1

yi

 ∝ y
α∗m+1−1
m+1

m∏
l=1

yα∗l−1
l

1−
l∑

j=1
yj

λl
 ,

(4.13)

where α∗ = α + ∑n−m
i=1 δV ′i , which is also proportional to the so-called generalized

Dirichlet distribution (see Connor and Mosimann (1969)). To sample from the pos-

terior measure, consider a well known transformations

Xl = Yl + Yl+1 + . . .+ Ym+1, l = 1, 2, . . . ,m+ 1.

Define,

Wl = Xl+1

Xl

, l = 1, 2, . . . ,m.

Simplification yields that

Y1 = 1−W1, Y2 = W1(1−W2), . . . , Ym = (1−Wm)
m−1∏
j=1

Wj, Ym+1 =
m∏
j=1

Wj. (4.14)

Straight-forward derivations show that W1,W2, . . . ,Wm have independent beta dis-

tributions with

W1 ∼ Beta(A1, α
∗
1),W2 ∼ Beta(A2, α

∗
2), . . . ,Wm ∼ Beta(Am, α∗m),

whereAj = α∗[V ∗(j),∞)+∑m
j=1 λj = α[V ∗(j),∞)+N([V ∗(j),∞))+∑m

j=1 λj, j = 1, 2, . . . ,m.

One may now take samples of W1,W2, . . . ,Wm, and then obtain Y1, Y2, . . . , Ym+1 us-

ing (4.14). An approximate posterior mean and thus nonparametric Bayes estimate

and point-wise credible intervals of F̄ (t) follows from the posterior samples.
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4.3.3 Joint Estimation of System and Components

Reliabilities

We now consider the joint estimation of component and system reliabilities when n

identical systems each with K components are under study. Denote the lifetime of

component j in the i-th system by {Tij} and let (0, τi] be the monitoring period for

the i-th system. Assume that {Tij, i = 1, 2 . . . , n} are IID with distribution Fj, and

{Tij} and {τi} are independent, Tij and Til are also independent for j 6= l. Recall

that the random observables for the j-th component are

{(Zij, δij), i = 1, 2, . . . , n}, j = 1, 2, . . . , K.

We assign independent PBD priors on Fj, j = 1, 2, . . . , K and obtain nonparametric

Bayes estimators of Fj, j = 1, 2, . . . , K, given the random observable {(Zij, δij), i =

1, 2, . . . , n} for the j-th component. Without loss of generality assume that first

n−mj are the complete observations and last mj are the right-censored observations

for the j-th component. To distinguish the censored observations from the complete

observations, define Z ′ij = Zij if δij = 1 and Z∗ij = Zij if δij = 0. Then the observables

for the j-th components are {Z ′1j, Z ′2j, . . . , Z ′n−mjj, Z
∗
1j, Z

∗
2j, . . . , Z

∗
mjj
}.

To specify a measurable partition of (0,∞) for Fj, let Z∗(1)j, Z
∗
(2)j, . . . , Z

∗
(mj)j be

the partition boundaries so that

Bj = (B1j, B2j, . . . , Bmjj, Bmj+1j) (4.15)

is a measurable partition of (0,∞), where

Blj = (Z∗(l−1)j, Z
∗
(l)j], l = 1, 2, . . . ,mj, and B(mj+1) = (Z∗(mj)j, Z

∗
(mj+1)j)

with Z∗(0)j = 0 and Z∗(mj+1)j = ∞. Define Fj(t) = Pj((0, t]) and Pj(Blj) = Ylj.

We assume that the random probability measure Pj has a PBD prior measure,

D(Bj, hj, αj), where

αj = (α1j, α2j, . . . , αmjj, αmj+1j), with αlj = αj(Blj), l = 1, 2, . . . ,mj + 1, (4.16)
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and

hj ≡ h(yj) = cj

mj+1∏
l=1

y
αlj−1
lj , 0 ≤ ylj ≤ 1, l = 1, . . . ,mj,mj + 1,

mj+1∑
l=1

ylj = 1

(4.17)

with normalizing constant cj. Then the posterior measure given in Corollary 2 follows

from the Theorem 3.

Corollary 2. Let Pj have PBD prior, D(Bj, hj, αj) and {Z ′1j, Z ′2j, . . . , Z ′n−mjj, Z
∗
(1)j,

Z∗(2)j, . . . , Z
∗
(mj)j} be a random observable from Pj with {Z∗(1)j, Z

∗
(2)j, . . . , Z

∗
(mj)j} are

right-censored observations. Then, the posterior measure, P ∗j ≡ (Pj | (Z ′1j, Z ′2j, . . . ,

Z ′n−mjj, Z
∗
(1)j, Z

∗
(2)j, . . . , Z

∗
(mj)j)), is a PBD measure, D(Bj, h

∗
j , α

∗
j ), where

h∗j ≡ h∗(yj) ∝ hj(yj)
mj+1∏
l=1

ylj
∑n−mj

i=1 I(Z′ij∈Blj)

 mj∏
l=1

mj+1∑
l′=l+1

yl′j


and

α∗j = αj +
n−mj∑
i=1

δz′ij .

�

Under the integrated squared-error loss function (4.8), a nonparametric Bayes

estimator of the j-th component distribution function is

F̂j(t) ≡ E[P ∗j ((0, t])] =
l−1∑
r=1

E(yrj) + E(ylj)
[
α∗j (Blj ∩ (0, t])/α∗j (Blj)

]
,

where the expectation of yj is under the pdf proportional to h∗(yj) and for l =

1, 2, . . . ,mj,mj + 1 is given by

E(Ylj) =
∫
yljh

∗(yj)dyj∫
h∗(yj)dyj

. (4.18)

Therefore an estimate of the j-th components reliability function is given by ̂̄
F j(t) =

1 − F̂j(t). Applying Lemma 1 and Theorem 4, we can then obtain a closed form

estimate of the reliability function for each component and denote those by ̂̄
F j, j =

1, 2, . . . , K. Therefore an estimate of the system reliability function can be expressed

in terms of the components reliability function using (4.1) is

̂̄
F φ(t) = hφ( ˆ̄F1(t), ˆ̄F2(t), . . . , ˆ̄FK(t)). (4.19)

80



www.manaraa.com

Denote the corresponding Doss et al. (1989) PL-type estimator of system reliability

function by

R̂φ(t) = hφ(R̂1,PLE(t), R̂2,PLE(t), . . . , R̂K,PLE(t)), (4.20)

where R̂j,PLE(t), j = 1, 2, . . . , K, are the PL-type estimators of the components re-

liability function as defined in (4.3). The Doss et al. (1989) estimator (4.20) is a

limiting case of our proposed estimator (4.19) when the prior measure αj → 0 for

each j = 1, 2, . . . , K, as given in Theorem 7. The proof of Theorem 7 follows from

Theorem 5.

Theorem 7. ̂̄
F φ(t) αj(R+)→0−−−−−−→ R̂φ(t).

4.4 Monte Carlo Studies

4.4.1 Simulation Studies I: Prior Mean Function Coincide

with True F

Simulation studies were carried out to examine the biases and root-mean-squared er-

rors (RMSEs) of the proposed nonparametric Bayes estimator of the system reliability

function based on system lifetime data, denoted by ̂̄
FNPB(t) (labeled BayesSys), and

components lifetimes data, denoted by ̂̄
F φ(t) (labeled BayesPhi), as well as corre-

sponding nonparametric (PL-type) estimators denoted by R̂PLE(t) (labeled PLESys)

and R̂φ(t) (labeled PLEPhi). We consider the three component series-parallel system

(Figure 4.1) with component lifetimes, Tij ∼ Exp(θj), j=1, 2, 3; θ = (1, 2, 1.5), and

monitoring time τi ∼ Exp(1). Simulated biases and RMSEs are obtained at the 5th,

10th , . . . , 95th percentile of the true data generating distribution based on 1000 repli-

cations for n=30, and compared with the corresponding nonparametric estimators.

To compute ̂̄
F φ(t) we assign independent prior measures αj(t,∞) = βj exp(−θjt)

with θ1 = 1, θ2 = 2, θ3 = 1.5 and βj = 10, j=1, 2, 3, on the component distribution
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Figure 4.2: Simulated biases and RMSEs of the estimators ̂̄
FNPB(t) (labeled

BayesSys), ̂̄F φ(t) (labeled BayesPhi), R̂PLE(t) (labeled PLESys), and R̂φ(t) (labeled
PLEPhi). Simulation parameters are n = 30, lifetimes (3-component series-parallel
system) from Exponential distribution with rate θ = (1, 2, 1.5), and with 1,000 repli-
cations.

functions Fj, j = 1, 2, 3, respectively. That is, each prior measure is βj times an ex-

ponential survivor function with parameter θj, where βj may be viewed as a precision

of the prior measure. Note that in this case the prior mean functions, ᾱj coincide

with component true reliability functions F̄j, j = 1, 2, 3. To compute ̂̄
FNPB(t) we

also assign a similar prior measure with θ = 1 and β = 1. In this case the prior

mean function does not coincide with the true distribution of system reliability. Even

for the simple case, when components distributions are all exponential, the system

lifetime distribution is no longer exponential distribution.

Figure 4.2 demonstrates that both ̂̄
FNPB(t) and ̂̄

F φ(t) possess larger biases but

smaller RMSEs than the nonparametric estimators R̂PLE and R̂φ, respectively. By

examining Figure 4.2, it is evident that ̂̄F φ demonstrates smaller biases and RMSEs

than ̂̄
FNPB(t) and R̂PLE exhibits slightly larger bias and RMSE than R̂φ. Among all

the four estimators ̂̄F φ(t) demonstrates smallest RMSEs. Therefore the Bayes estima-
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tor of system reliability function, ̂̄F φ based on the component lifetimes data and thus

components reliability functions outperforms other estimators. However, in practice

it is unlikely that our prior measure will coincide with the true distribution function.

So we carried out other simulation studies when prior measures are misspecified.

4.4.2 Simulation Studies II: Prior Mean Functions do not

Coincide with True F̄

We also investigated the biases and RMSEs in the case of misspecified prior mea-

sures, that is, when ᾱj differs from the component true lifetime generating distribu-

tions F̄j, j = 1, 2, 3. In particular, for each component, IID lifetimes are generated

from the Weibull distribution with scale parameter θj and shape parameter γj with

θ = (1, 1, 1), γ = (2, 1.5, 1.2) and random monitoring τi ∼ Exp(1). However, we as-

sign prior measure αj(t,∞) = βj exp[−θjt] instead of αj(t,∞) = βj exp[−(θjt)γj ] with

θ = (1, 1, 1), and β = (1,1,1) such that ᾱj is proportional to an exponential survivor

function and thus the prior mean function differs from the true data generating distri-

bution for each component. We also choose β =(10,10,10) and (20,20,20) to examine

the effects of precision parameter β when priors are misspecified.

From Figure 4.3, it is obvious that for a smaller value of the precision parameter,

namely β = (1, 1, 1), ̂̄F φ(t) has smaller RMSE than R̂φ(t) even in the case of mis-

specified prior measures. As the precision of the prior measure β increases, ̂̄F φ(t)

demonstrates higher biases but smaller RMSE’s than R̂φ(t) except for smaller values

of t. Figure 4.3 therefore indicates that nonparametric Bayes estimator ̂̄
F φ(t) is

robust in the sense that it does not suffer significantly due to a misspecification of

the prior measures. When prior measures are misspecified, a larger magnitude of the

precision parameter β produces larger biases and RMSE’s for the Bayes estimatorŝ̄
F φ and ̂̄

FNPB. The effect of misspecification can be restrained by choosing smaller

values of the precision parameters.
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Figure 4.3: Simulated biases and RMSEs of the estimators ̂̄
FNPB(t) (labeled

BayesSys), ̂̄F φ(t) (labeled BayesPhi), R̂PLE(t) (labeled PLESys), and R̂φ(t) (labeled
PLEPhi). Simulation parameters are n = 30, θ = (1, 1, 1) and γ = (2, 1.5, 1.2)
(Weibull(θ, γ)) with 1000 replications. Mis-specified prior measures α(u,∞) =
β exp(−θu), with θ = (1, 1, 1) and β = (1, 1, 1), (10, 10, 10), (20,20,20).
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Figure 4.4: Asymptotic relative efficiency: true prior mean (top left), misspecified
prior mean with β =1 (top right), β =10 (bottom left), and β = 20 (bottom right).

Relative efficiencies of different types of estimators of the system reliability func-

tion are obtained. Relative efficiency of F̄NPB(t) and F̄φ(t) is defined by V ar(F̄NPB(t))
V ar(F̄φ(t)) .

Similarly relative efficiency of Rφ(t) and F̄φ(t) is defined by V ar(F̄φ(t))
V ar(Rφ(t)) . However, Fig-

ure 4.4 is based on RMSEs since Bayes estimators are biased. From Figure 4.4 (top

left and right), it is evident that Bayes estimator F̄φ(t) is more efficient than the

nonparametric estimator Rφ(t) both in the case of correctly specified prior measures

and misspecified prior measures with smaller values of precision parameters.
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4.5 Illustrative Example

We illustrate the proposed estimators with a randomly generated data set and com-

pare it with nonparametric (PL-type) estimators. Again, we consider the three com-

ponent series-parallel system (Figure 4.1) for data generation purposes. Assume

that Tij ∼ Weibull(θj, γj), θ = (1, 1, 1), γ = (2, 1.5, 1.2), and monitoring times,

τi ∼ Exp(1). Assign prior measure αj(t,∞) = βj exp[−(θjt)γ] with θ = (1, 1, 1),

γ = (1, 1, 1) and β = (1,1,1) (right figure), that is, prior measures are misspecified.

With θ = (1, 1, 1), γ = (2, 1.5, 1.2) and β = (10,10,10) (left figure) prior measures are

correctly specified. Figure 4.5 demonstrates that nonparametric Bayes estimators of

system reliability function, in particular, F̄φ(t), perform better than other estimators

and is closer to the true reliability function than the other estimators. The right

panel of Figure 4.5 indicates that Bayes estimators are robust in the sense that the

effect of misspecification is not severe with smaller values of parameters βj .

4.6 Concluding Remarks

The nonparametric Bayes estimator ̂̄F φ(t) developed here served as a Bayesian counter

part of the Doss et al. (1989) estimator R̂φ(t). The Doss et al. (1989) estimator is a

limiting case of our proposed estimator ̂̄F φ(t). Bayes estimators of system reliability

function are smoother in some sense than the corresponding nonparametric estima-

tors. Simulation studies demonstrate that ̂̄F φ(t) yields smaller RMSEs than R̂φ(t).

Simulation studies further demonstrate that (Figure 4.2 and Figure 4.3) ̂̄F φ(t) and

R̂φ(t) perform better than F̄NPB(t) and R̂PLE(t), respectively, in terms of RMSEs.

Nonparametric Bayes estimators are robust in the sense that the effect of misspecifi-

cation of prior measures is not severe with smaller values of precision parameters.

The PBD prior is an elegant nonparametric prior which provides succinct poste-

rior calculation. Given the observations (left-truncated, interval-censored, and right-
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Figure 4.5: Reliability function of ̂̄
FNPB(t) (labeled NPBSys), ̂̄

F φ(t) (labeled
NPBPhi), R̂PLE(t) (labeled PLESys), and R̂φ(t) (labeled PLEPhi) and the true dis-
tribution (labeled True). Priors are α(u,∞) = β exp{−(u/θ)γ} with θ = (1, 1, 1), γ
= (2, 1.5, 1.2), β = (10,10,10) (left side graph), θ = (1, 1, 1), γ = (1, 1, 1), β = (1, 1, 1)
(right side graph)

censored), the posterior measure is also a PBD measure when we assign a PBD prior.

We derived closed form estimators as well as developed a procedure to sample from the

posterior measure. Moreover, a PBD prior can conveniently handle left-truncated,

interval-censored, and right-censored data. However, we did not consider here the

case when data are left truncated as well as right-censored.
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Appendix A

Chapter 2 Proofs and Copyright Permission

A.1 Proofs

Proof of Lemma 1: For any C ∈ σ(Z ),

QZ|Y (Z ∈ C | Y ∈ B2) =
∫
C QY |Z(Y ∈ B2 | z)QZ(dz)∫
QY |Z(Y ∈ B2 | z)QZ(dz) . (A.1)

∴ EZ∼QZ [h(Z) | Y ∈ B2] =
∫
h(z)QY |Z(Y ∈ B2 | z)QZ(dz)∫
QY |Z(Y ∈ B2 | z)QZ(dz) (A.2)

QZ|(X,Y ) [C | (X, Y ) ∈ (B1 ×B2)]

= Q(Z,X,Y )(Z ∈ C,X ∈ B1, Y ∈ B2)
Q(X,Y )(X ∈ B1, Y ∈ B2)

=
∫
C Q(X,Y )|Z(X ∈ B1, Y ∈ B2 | Z)QZ(dz)∫
Q(X,Y )|Z(X ∈ B1, Y ∈ B2 | Z)QZ(dz)

=
∫
C

∫
B1
QX|Z(dx | z)QY |(Z,X)(Y ∈ B2 | z, x)QZ(dz)∫ ∫

B1
QX|Z(dx | z)QY |(Z,X)(Y ∈ B2 | z, x)QZ(dz)

=
∫
C QY |(Z,X)(Y ∈ B2 | z, x)QX|Z(X ∈ B1 | z)QZ(dz)∫
QY |(Z,X)(Y ∈ B2 | z, x)QX|Z(X ∈ B1 | z)QZ(dz)

=

∫
C QY |(Z,X)(Y ∈ B2 | z, x)

[
QX|Z(X∈B1|z)QZ(dz)∫
QX|Z(X∈B1|w)QZ(dw)

]
∫
QY |(Z,X)(Y ∈ B2 | z, x)

[
QX|Z(X∈B1|z)QZ(dz)∫
QX|Z(X∈B1|w)QZ(dw)

]
=
∫
C QY |(Z,X)(Y ∈ B2 | z, x)QZ|X(dz | X ∈ B1)∫
QY |(Z,X)(Y ∈ B2 | z, x)QZ|X(dz | X ∈ B1)

Therefore, QZ|(X,Y ) [C | (X, Y ) ∈ (B1 ×B2)]

=
∫
C QY |(Z,X)(Y ∈ B2 | z, x)QZ|X(dz | X ∈ B1)∫
QY |(Z,X)(Y ∈ B2 | z, x)QZ|X(dz | X ∈ B1) (A.3)
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∴ EZ∼QZ(·)
(X,Y )|Z∼Q(X,Y )|Z(·,·|z)

[h(Z) | (X, Y ) ∈ (B1 ×B2)]

=
∫
h(z)QY |(Z,X)(Y ∈ B2 | z, x)QZ|X(dz | X ∈ B1)∫
QY |(Z,X)(Y ∈ B2 | z, x)QZ|X(dz | X ∈ B1) (A.4)

Comparing (A.3) with (A.1) one can write

QZ|(X,Y ) [C | X ∈ B1, Y ∈ B2] = Q∗Z|Y (· | B2) where Q∗Z ≡ Z ∼ QZ|X (· | B1).

Comparing (A.2) and (A.4) we conclude that

EZ∼QZ(·)
(X,Y )|Z∼Q(X,Y )|Z(·,·|z)

[h(Z) | (X, Y ) ∈ (B1 ×B2)]

= EZ∼QZ|X(·|B1)
Y |(Z,X)∼QY |(Z,X)(·|z,B1)

[h(Z) | Y ∈ B2] ,

This completes the proof. �

Proof of Proposition 1: It suffices to prove the Proposition for n = 1 and K1 = k1,

since the Proposition would then follow upon repeated application of the case with

n = 1. Note that {τ1, K1 = k1, T11 = t11, T12 = t12, . . . , T1K1 = t1k1} = {T11 =

t11, . . . , T1k1 = t1k1 , S1k1 ≤ τ1 < S1k1+1} = {T11 = t11, . . . , T1k1 = t1k1 , S1k1 ≤

τ1, T1k1+1 ∈ [τ1−S1k1 ,∞)}. Once we observed that K1 = k1 on [0, τ1], then S1k1 ≤ τ1

holds. It is also sufficient to prove the Proposition for k1 = 1. For t11 ≤ τ1,

EP∼D(α)[h(P ) | (τ1, k1 = 1, T11 = t11)]

= EP∼D(α)[h(P ) | (T11 = t11, T12 > τ1 − t11)]

= EP∼D(α+δt11 )[h(P ) | T12 > τ1 − t11] [using Corollary 2]

It follows that, for t∗1 = τ1 − S1k1 ≥ 0,

EP∼D(α)[h(P ) | (τ1, K1 = k1, T11 = t11, . . . , T1k1 = t1k1)]

= E
P∼D(α+

∑k1
j=1 δt1j )[h(P ) | T1k1+1 ∈ [t∗1,∞)].

By repeated application of the above result, it then follows that

EP∼D(α)[h(P ) | (τi, Ki = ki, Ti1 = ti1, Ti2 = ti2, . . . , Tiki = tiki , i = 1, 2, . . . , n)]

= EP∼D(α∗)[h(P ) | (Tiki+1 ∈ [t∗i ,∞), i = 1, 2, . . . , n)]I(siki ≤ τi).
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This completes the proof of the Proposition. �

Proof of Proposition 2: The proof of this result is motivated by the Lemma 2 of

Susarla and Van Ryzin (1976). Consider the partition [0, T ∗1 ), [T ∗1 , T ∗2 ), . . . , [T ∗m,∞)

on <+. Define Vi = P [T ∗j−1, T
∗
j ) for j = 1, 2, . . . ,m,m + 1, then (V1, V2, . . . , Vm) ∼

D(β1, . . . , βm+1) where βj = α∗[T ∗j−1, T
∗
j ) for j = 1, 2, . . ., m+1 and ∑m+1

j=1 Vj = 1.

Clearly P [T ∗1 ,∞) = 1− V1, P [T ∗2 ,∞) = 1− V1 − V2, . . ., P [T ∗m,∞) = 1−∑m
j=1 Vj.

c E

 m∏
j=1

(P [T ∗j ,∞))λj


= c E

 m∏
j=1

(1−
m∑
j=1

Vj)λj


=
∫ ∫

. . .
∫ 1−

∑m−1
j=1 vj

0

m∏
j=1

(1−
m∑
j=1

vj)λj
m∏
j=1

[vβj−1
j ](1−

m∑
j=1

vj)βm+1−1dv1dv2 . . . dvm

where m-tuple integration is carried over the simplex {(v1, v2, . . . , vm) : 0 ≤ vj ≤

1,∑m
j=1 vj ≤ 1}. Integrating first w.r.to vm then vm−1, . . . , v1, respectively, and at

each stage using the result
∫ a

0 t
γ−1(a − t)η−1dw = aγ+η−1B(γ, η), for 0 ≤ a ≤ 1 and

γ, η ≥ 0, we obtain

c E[
m∏
j=1

(P [T ∗j ,∞))λj ]

=
∫
. . .
∫ 1−

∑m−1
j=1 vj

0
vβm−1

1 . . . vβm−1
m (1−

m∑
j=1

vj)βm+1+λm−1dvm . . . dv2dv1

= B(βm, βm+1 + λm).∫
. . .
∫ 1−

∑m−2
j=1 vj

0
vβ1−1

1 . . . vβm−1
m−1 (1−

m−1∑
j=1

vj)βm+1+βm+λm−1dvm−1 . . . dv2dv1

=
m∏
j=1

B(βj,
m+1∑
r=j+1

(βr + λr−1))·

Proof of Proposition 3: The proof of this result is analogous to Lemma 1 of Susarla
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and Van Ryzin (1976).

P{F̄ (u) ≥ w|TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n}

= P{F̄ (u) ≥ w, TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, ..., n}
P{TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, ..., n}

=
E[P{F̄ (u) ≥ w, TiKi+1 ∈ [T ∗i ,∞)|I[F̄ (u)≥w]P [T ∗i ,∞), i = 1, . . . , n}]

E[P{TiKi+1 ∈ [T ∗i ,∞)|P [T ∗i ,∞), i = 1, 2, ..., n}]

=
E[I[F̄ (u)≥w]

∏n
i=1 P [T ∗i ,∞)]

E[∏n
i=1 P [T ∗i ,∞)] [using definition 2]

= E[I[F (u)≤1−w]
∏n
i=1 P [T ∗i ,∞)]

E[∏n
i=1 P [T ∗i ,∞)]

Proof of Proposition 4: The proof of this Proposition is analogous to Corollary 1

of Susarla and Van Ryzin (1976). We assume that T ∗(j), j = 1, 2, . . . ,m + 1, are the

distinct ordered censoring event time of T ∗i , i = 1, 2, . . . , n. For any random variable

F̄ ∈ [0, 1], we have

E{(F̄ (u))ν |TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n}

=
∫ 1

0
P{F̄ (u) ≥ w|TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n}dwν (using Fubini’s theorem)

=
∫ 1

0 E
[
I[F (u)≤1−w]

∏n
i=1 P [T ∗i ,∞)

]
dwν

E [∏n
i=1 P [T ∗i ,∞)]

=
E
[∫ 1

0 I[F (u)≤1−w]dw
ν ∏n

i=1 P [T ∗i ,∞)
]

E [∏n
i=1 P [T ∗i ,∞)]

=
E
[∫ 1−F (u)

0 dwν
∏n
j=1 P [T ∗j ,∞)

]
E [∏n

i=1 P [T ∗i ,∞)]

= E [(P [u,∞))ν ∏n
i=1 P [T ∗i ,∞)]

E [∏n
i=1 P [T ∗i ,∞)] .

Therefore,

E
{

(F̄ (u))ν |TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n
}

=
E
[
(P [u,∞))ν ∏m

j=1(P [T ∗(j),∞))λj
]

E
[∏m

j=1(P [T ∗(j),∞))λj
] ,

(A.5)

where m is the number of distinct censoring events and λj, j = 1, 2, . . . ,m, are the

number of events censored at times T ∗(j). Using Proposition 2, we have
m+1∏
j=1

Γ(βj)E
 m∏
j=1

(P [T ∗j ,∞))λj
 = Γ(α∗(<+))

m∏
j=1

B(βj,
m+1∑
r=j+1

(βr + λr−1)).
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Replacing βj by α∗[T ∗(j−1), T
∗
(j)) for j = 1, 2, . . . ,m+ 1, in the above we get

m+1∏
j=1

Γ(α∗[T ∗(j−1), T
∗
(j)))E

 m∏
j=1

(P [T ∗(j),∞))λj


= Γ(α∗(<+))
m∏
j=1

B(α∗[T ∗(j−1), T
∗
(j)), α∗[T ∗(j),∞) +

m∑
r=j

λr)

 . (A.6)

Again applying Proposition 2 with the partition points 0 = T ∗(0) < T ∗(1), . . . , < T ∗(l) <

u < T ∗(l+1), . . . , < T ∗(m) < T ∗(m+1) =∞ on <+ and associated exponents λ1, . . . , λl, ν, λl+1,

. . . , λm, respectively, we get

m+1∏
j=1
j 6=l+1

Γ(α∗[T ∗(j−1), T
∗
(j)))Γ(α∗[T ∗(l), u))Γ(α∗[u, T ∗(l+1)))E

(P [u,∞))ν
m∏
j=1

(P [T ∗(j),∞))λj


= Γ(α∗(<+))
l∏

j=1

B(α∗[T ∗(j−1), T
∗
(j)), α∗[T ∗(j),∞) + ν +

m∑
r=j

λr)


m∏

j=l+2

B(α∗[T ∗(j−1), T
∗
(j)), α∗[T ∗(j),∞) +

m∑
r=j

λr)

B(α∗[T ∗(l), u), α∗[u,∞) + ν +
m∑

r=l+1
λr)

B(α∗[u, T ∗(l+1)), α∗[T ∗(l+1),∞) +
m∑

r=l+1
λr)

 . (A.7)

Using the results from (A.6), (A.7) and B(a, b) = Γ(a)Γ(b)
Γ(a+b) and canceling common

terms, we obtain from right hand side of (A.5)

E
[
(P [u,∞))ν ∏m

j=1(P [T ∗(j),∞))λj
]

E
[∏m

j=1(P [T ∗(j),∞))λj
]

=

Γ(α∗[u,∞) + ν +∑m
r=l+1 λr)

Γ(α∗[u,∞) +∑m
r=l+1 λr)

Γ(α∗[T ∗(l),∞) +∑m
r=l+1 λr)

Γ(α∗[T ∗(l),∞) + ν +∑m
r=l+1 λr)


l∏

j=1

Γ(α∗[T ∗(j),∞) + ν +∑m
r=j λr)

Γ(α∗[T ∗(j),∞) +∑m
r=j λr)

.
Γ(α∗[T ∗(j),∞) +∑m

r=j λr)
Γ(α∗[T ∗(j−1),∞) + ν +∑m

r=j λr)

.
Using the result Γ(a + ν) = Γ(a)∏ν−1

s=0(a + s) for a > 0 in the above equation and

canceling terms yields,
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L.H.S. of (A.5)

=
ν−1∏
s=0

 α∗(u,∞) + s+∑m
j=l+1 λj

α∗[T ∗(l),∞) + s+∑m
j=l+1 λj

l∏
j=1

 α∗[T ∗(j),∞) + s+∑m
r=j λj

α∗[T ∗(j−1),∞) + s+∑m
r=j λr




=
ν−1∏
s=0


 α(u,∞) + s+ Y +(u)
α[T ∗(l),∞) + s+ Y (T ∗(l))− λl

 l∏
j=1

 α[T ∗(j),∞) + s+ Y (T ∗(j))
α[T ∗(j−1),∞) + s+ Y (T ∗(j−1))


 ,

with α∗ = α + ∑n
i=1

∑ki
j=1 δTij and the definition of Y +, Y , and N . Rearranging the

terms of the denominators in the R.H.S. gives the result that

E
[
(F̄ (u))ν | TiKi+1 ∈ [T ∗i ,∞), i = 1, 2, . . . , n

]

=
ν−1∏
s=0


[
α(u,∞) + s+ Y +(u)
α(<+) + s+N

]
l∏

j=1

 α[T ∗(j),∞) + s+ Y (T ∗(j))
α[T ∗(j),∞) + s+ Y (T ∗(j))− λj


 ·

Proof of Theorem 2: The posterior variance of F̄ is

σ2
NPB(u) = E[(F̄ (u))2 | Tij = tij, TiKi+1 ∈ [T ∗i ,∞), i = 1, . . . , n; j = 1, . . . , Ki]−[

E[F̄ (u) | Tij = tij, TiKi+1 ∈ [T ∗i ,∞), i = 1, . . . , n; j = 1, . . . , Ki)]
]2
.

Plugging ν = 2 and ν = 1 in Proposition 4, we obtain the expressions for the poste-

rior second moment and first moment of F̄ (u), respectively. Therefore the posterior

variance of F̄ (u) is

σ2
NPB(u)

= ̂̄
FNPB(u)

α(u,∞) + Y +(u) + 1
α(<+) +N + 1

l∏
j=1

 α[T ∗(j),∞) + Y (T ∗(j)) + 1
α[T ∗(j),∞) + Y (T ∗(j)) + 1− λj


− ̂̄

F
2
NPB(u)

= ̂̄
FNPB(u)

α(u,∞) + Y +(u) + 1
α(<+) +N + 1

l∏
j=1

 α[T ∗(j),∞) + Y (T ∗(j)) + 1
α[T ∗(j),∞) + Y (T ∗(j)) + 1− λj

− ̂̄
FNPB(u)

 .
This completes the proof. �
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Proof of Theorem 3: It follows from Proposition 1 that

P | (Tij = tij, i = 1, 2, . . . , n; j = 1, 2, . . . , ki) ∼ D(α∗)

where α∗ = α+∑n
i=1

∑ki
j=1 δtij . Without loss of generality assume that T1k1 ∈ [t∗(1),∞).

Then,

P{P (B∗) ∈ B | T1k1 ∈ [t∗(1),∞)} ∝P{P (B∗) ∈ B, T1k1 ∈ [t∗(1),∞)}

= E
[
P
(
P (B∗) ∈ B, T1k1 ∈ [t∗(1),∞) | P

)]
= E

[
P{T1k1 ∈ [t∗(1),∞) | P}I(P (B∗) ∈ B)

]
= E

[
P ([t∗(1),∞))I(P (B∗) ∈ B)

]
∝
∫

B

[
m+1∏
l=1

[
y
α∗l−1
l

]
(1− y1)

]
dy,

since ∑m+1
l=1 yl = 1. Repeating the above procedure for all right-censored observations

we obtain

P {P (B∗) ∈ B | Tij = tij, Tiki+1 ∈ [t∗i ,∞), i = 1, 2, . . . , n}

∝
∫

B
y
α∗m+1−1
m+1

m∏
l=1

yα∗l−1
l

1−
l∑

j=1
yj

 dy.
This completes the proof. �

Proof of Theorem 4: When α(<+)→ 0, then the nonparametric Bayes estimator

̂̄
FNPB(u) =

α(u,∞) + Y +(u)
α(<+) +N

l∏
j=1

 α(T ∗(j),∞) + Y (T ∗(j))
α(T ∗(j),∞) + Y (T ∗(j))− λj




→


Y +(u)
N

l∏
j=1
δj=0

 Y (T ∗(j))
Y (T ∗(j))− λj


 . (A.8)

Let i(u) be the largest integer such that T ′i(u) ≤ u. Then

Y +(u)
N

=
∏

j≤i(u)

{
Y +(T ′j)
Y (T ′j)

}
=


∏

j≤i(u)
δj=1

{
Y +(T ′j)
Y (T ′j)

}

∏

j≤i(u)
δj=0

{
Y +(T ′j)
Y (T ′j)

} .
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Now, using the above results in the right-hand side of (A.8) and replacing T ∗(j) by T ′(j)
for δj = 0, we get

Y +(u)
N

l∏
j=1
δj=0

 Y (T ∗(j))
Y (T ∗(j))− λj)




=
∏

j≤i(u)
δj=1

{
Y +(T ′j)
Y (T ′j)

} ∏
j≤i(u)
δj=0

{
Y +(T ′j)
Y (T ′j)

}
l∏

j=1
δj=0

 Y (T ′(j))
Y (T ′(j))− λj

 =
∏

j≤i(u)
δj=1

{
Y +(T ′j)
Y (T ′j)

}
·

Therefore, as α(<+)→ 0,

̂̄
FNPB(u)→


Y +(u)
N

l∏
j=1
δj=0

{
Y (T ′j)

Y (T ′j)− λj

} =
∏

j≤i(u)
δj=1

{
Y +(T ′j)
Y (T ′j)

}
= ̂̄
F PLE(u).

This completes the proof of the Theorem. �
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Appendix B

Chapter 4 Proofs

B.1 Proofs

Proof of Lemma 1:

E(Yj) =
∫
yjh
∗(y)dy∫

h∗(y)dy = Cj(α∗l + I(l = j), λl, l = 1, 2, . . . ,m,m+ 1)
Cj(α∗l , λl, l = 1, 2, . . . ,m,m+ 1) ,

where Cj(α∗l + I(l = j), λl, l = 1, 2, . . . ,m,m+ 1)

=
∫
yj

m+1∏
l=1

[
y
α∗l−1
l

] m∏
l=1

 m+1∑
r=l+1

yr

λl dy1dy2 . . . dym

=
∫
yj

m∏
l=1

[
y
α∗l−1
l

] (
1−

m∑
r=1

yr

)α∗m+1−1 m∏
l=1

[
1−

l∑
r=1

yr

]λl
dy1dy2 . . . dym

=
∫
. . .
∫
y
α∗1−1
1 y

α∗2−1
2 . . . y

α∗j+1−1
j . . . y

α∗m−1−1
m−1

m−1∏
l=1

[
1−

l∑
r=1

yr

]λl
dy1dy2 . . . dym−1

∫ 1−
∑m−1

l=1 yl

0
yα
∗
m−1

m

[
1−

m∑
r=1

yr

]α∗m+1+λm−1

dymintegrate first w.r.t. ym over the simplex {(y1, y2, . . . , ym) : 0 ≤ yj ≤ 1,
m∑
j=1

yj ≤ 1}


= B(α∗m, α∗m+1 + λm)
∫
. . .
∫ m−2∏

l=1
y
α∗l−1
l

m−2∏
l=1

[
1−

l∑
r=1

yr

]λl
dy1dy2 . . . dym−2

∫ 1−
∑m−1

l=1 yl

0
y
α∗m−1−1
m

[
1−

m−1∑
r=1

yr

]α∗m+1+λm−1

dym−1

Then integrating w.r.to ym−1, . . . , y1, respectively, and at each stage using the result∫ a
0 t

γ−1(a−t)η−1dt = aγ+η−1B(γ, η), for 0 ≤ a ≤ 1 and γ, η ≥ 0, and B(γ, η) = Γ(γ)Γ(η)
Γ(γ+η) ,

we obtain

Cj(α∗l +I(l = j), λl, l = 1, 2, . . . ,m,m+1) =
m∏
l=1

B
α∗l + I(l = j),

m+1∑
r=l+1

[α∗r + λr−1]

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E(Yj) = Cj (α∗l + I(l = j), λl, l = 1, 2, . . . ,m,m+ 1)
Cj (α∗l , λl, l = 1, 2, . . . ,m,m+ 1)

=
∏m
l=1

[
B
(
α∗l + I(l = j),∑m+1

r=l+1[α∗r + λr−1]
)]

∏m
l=1

[
B
(
α∗l ,

∑m+1
r=l+1[α∗r + λr−1]

)]
=
[
α(Bj) +N(Bj)
α(<+) + n

] j−1∏
l=1

α(V ∗(l),∞) + Y +(V ∗(l)) + λl

α(V ∗(l),∞) + Y +(V ∗(l))


 .

Proof of Theorem 5: We can recover the PL-type estimator from our nonparametric

Bayes (NPB) estimator ̂̄FNPB. To this end, let V ∗∗i , i = 1, 2, . . . , n, denote the ordered

(increasing magnitude) observed values of Vi, i = 1, 2, . . . , n, so that 0 ≤ V ∗∗1 ≤ V ∗∗2 ≤

, . . . ,≤ V ∗∗n . Let N †(w) = ∑n
r=1 I(V ∗∗r ≤ w, εr = 1), where εr = 1 if V ∗∗r is an

uncensored (complete) observation, and 0 otherwise. Then the PL-type estimator

R̂PLE(t) =
∏
w≤t

{
1− ∆N †(w)

Y (w)

}
=
∏
w≤t

{
Y +(w)
Y (w)

}
, (B.1)

where Y +(w) and Y (w) are as defined (4.4)

When

α→ 0, ̂̄FNPB →


N((0, t) ∩Bl)

n

l−1∏
j=1
εj=0

Y (V ∗∗(j)) + λj

Y +(V ∗∗(j))


 .

Therefore when α→ 0 jump size at time t is

F (t)− F (t−) =
[

∆N †(t)
n

]  l−1∏
j=1
εj=0

Y (V ∗∗(j)) + λj

Y +(V ∗∗(j))


 . (B.2)

Let i(t) be the largest integer such that V ∗∗i(t) ≤ t. Then

∆N †(t)
n

=
∏
j≤i(t)

Y
+(V ∗∗(j))
Y (V ∗∗(j))


[

∆N †(t)
Y +(t)

]

=


∏
j≤i(t)
εj=1

Y
+(V ∗∗(j))
Y (V ∗∗(j))




∏
j≤i(t)
εj=0

Y
+(V ∗∗(j))
Y (V ∗∗(j))



[

∆N †(t)
Y +(t)

]
.
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Now (B.2) implies that

∏
j≤i(t)
εj=1

{
Y +(V ∗∗j )
Y (V ∗∗j )

}

∏
j≤i(t)
εj=0

Y
+(V ∗∗(j))
Y (V ∗∗(j))



[

∆N †(t)
Y +(t)

] ∏
j≤i(t)
εj=0

 Y (V ∗∗(j))
Y +(V ∗∗(j))



=


∏
j≤i(t)
εj=1

Y
+(V ∗∗(j))
Y (V ∗∗(j))



[

∆N †(t)
Y +(t)

]
= ∆N †(t)

Y (t)

This implies that the jump is only at the complete observations and the jump size

is ∆N(t)
Y (t) which is exactly same as the PL-type estimator. Therefore as α(<+) → 0,

PL-type estimator is a limiting case of the proposed nonparametric Bayes estimator.

This completes the proof of the Theorem. �
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